Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires (original) (raw)

Silicon Nanowires Obtained by Low Temperature Plasma-Based Chemical Vapor Deposition

MRS Proceedings, 2012

Silicon Nanowires (Si-NWs) are obtained by vapor-liquid-solid growth using an inductively coupled chemical vapor deposition system which works at temperatures lower than 400 °C. Gold nanodots are used as metal catalyst. The selective growth of Si-NWs on the gold nanodots is obtained by controlling the contribution coming from the uncatalyzed growth on the bare Si substrate. In this way the final NW length can be controlled, and it is not influenced by the thickness of the uncatalyzed layer. The important parameter ruling the NW growth is found to be the plasma power which governs the dissociation of the Si precursor gas. Final NW lengths of 1 m are obtained at temperatures of 380 °C with a thickness of uncatalyzed layer equal to zero. Also the NW density is addressed in this work and it is optimised by increasing the gold equivalent thickness. The NW density is increased from 2.9×10 8 to 1.3×10 10 cm -2 , when the gold equivalent thickness passes from 1.8 nm to 2.2 nm.

Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition

2003

Abstract Silicon nanowires were selectively grown at temperatures below 400 C by plasma enhanced chemical vapor deposition using silane as the Si source and gold as the catalyst. A detailed growth study is presented using electron microscopy, focused ion beam preparation, and Raman spectroscopy. A radio-frequency plasma significantly increased the growth rate. The Si nanowires show an uncontaminated, crystalline silicon core surrounded by a 2-nm-thick oxide sheath.