Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm (original) (raw)

Edge magnitude based multilevel thresholding using Cuckoo search technique

Expert Systems with Applications, 2013

Multilevel thresholding technique is popular and extensively used in the field of image processing. In this paper, a multilevel threshold selection is proposed based on edge magnitude of an image. The gray level co-occurrence matrix (second order statistics) of the image is used for obtaining multilevel thresholds by optimizing the edge magnitude using Cuckoo search technique. New theoretical formulation for objective functions is introduced. Key to our success is to exploit the correlation among gray levels in an image for improved thresholding performance. Apart from qualitative improvements the method also provides us optimal threshold values. Results are compared with histogram (first order statistics) based betweenclass variance method for multilevel thresholding. It is observed that the results of our proposed method are encouraging both qualitatively and quantitatively.

A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding

Multimedia Tools and Applications, 2021

The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D Masi entropy is quite new in the thresholding application. However, the 1-D Masi entropy-based image thresholding fails to consider the contextual information. To address this problem, we propose a 2-D Masi entropy-based multilevel image thresholding by utilizing a 2-D histogram, which ensures the contextual information during the thresholding process. The computational complexity in multilevel thresholding increases due to the exhaustive search process, which can be reduced by a nature-inspired optimizer. In this work, we propose a leader Harris hawks optimization (LHHO) for multilevel image thresholding, to enhance the exploration capability of Harris hawks optimization (HHO). The increased exploration can be achieved by an adaptive perching during the exploration phase together with a leader-based mutation-selection during each generation of Harris hawks. The performance of LHHO is evaluated using the standard classical 23 benchmark functions and found better than HHO. The LHHO is employed to obtain optimal threshold values using 2-D Masi entropy-based multilevel thresholding objective function. For the experiments, 500 images from the Berkeley segmentation dataset (BSDS 500) are considered. A comparative study on state-of-the-art algorithm-based thresholding methods, using segmentation metrics such aspeak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the feature similarity index (FSIM), is performed. The experimental results reveal a remarkable difference in the thresholding performance. For instance, the average PSNR values (computed over 500 images) for the level 5 are increased by 2% to 4% in case of 2-D Masi entropy over 1-D Masi entropy.

Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques

Neural Computing and Applications, 2019

Image segmentation using multilevel thresholding (MT) is one of the leading methods. Although, as most techniques are based on the image histogram to be segmented, MT approaches only include the occurrence frequency of particular intensity range disregarding each spatial information. Energy curve-based contextual information can help to improve the quality of the thresholded image as it computes not only the value of the pixel but also its vicinity. Therefore, the energy curve is intended to carry spatial information into a curve with the same properties as the histogram. In this paper, classical Otsu's method (between-class variance) is combined with energy curve for multilevel thresholding to perform segmentation of colored images. The energy curve-based Otsu (Energy-Otsu) uses an exhaustive search process to determine the optimal threshold values. However, due to the multidimensionality and multimodal nature of the color images, it becomes challenging and highly complex to obtain optimal thresholds. Therefore, the cuckoo search (CS) algorithm is coupled with Otsu thresholding criteria to perform MT over the energy curve. The proposed Energy-Otsu-CS method produces bettersegmented results as compared to other well-known optimization algorithms such as differential evolution, particle swarm optimization, firefly algorithm, bacterial foraging optimization, and artificial bee colony algorithm. The proposed approach is examined intensively regarding quality, and the numerical parameter analysis is presented to compare the segmented results of the algorithms against closely related current approaches such as gray-level co-occurrence matrix and Renyi' entropy-based thresholding approaches.

Constriction coefficient based particle swarm optimization and gravitational search algorithm for multilevel image thresholding

Expert systems, 2021

Image segmentation is one of the pivotal steps in image processing. Actually, it deals with the partitioning of the image into different classes based on pixel intensities. This work introduces a new image segmentation method based on the constriction coefficient‐based particle swarm optimization and gravitational search algorithm (CPSOGSA). The random samples of the image act as searcher agents of the CPSOGSA algorithm. The optimal number of thresholds is determined using Kapur's entropy method. The effectiveness and applicability of CPSOGSA in image segmentation is accomplished by applying it to five standard images from the USC‐SIPI image database, namely Aeroplane, Cameraman, Clock, Lena, and Pirate. Various performance metrics are employed to investigate the simulation outcomes, including optimal thresholds, standard deviation, MSE (mean square error), run time analysis, PSNR (peak signal to noise ratio), best fitness value calculation, convergence maps, segmented image graphs, and box plot analysis. Moreover, image accuracy is benchmarked by utilizing SSIM (structural similarity index measure) and FSIM (feature similarity index measure) metrics. Also, a pairwise non‐parametric signed Wilcoxon rank‐sum test is utilized for statistical verification of simulation results. In addition, the experimental outcomes of CPSOGSA are compared with eight different algorithms including standard PSO, classical GSA, PSOGSA, SCA (sine cosine algorithm), SSA (salp swarm algorithm), GWO (grey wolf optimizer), MFO (moth flame optimizer), and ABC (artificial bee colony). The simulation results clearly indicate that the hybrid CPSOGSA has successfully provided the best SSIM, FSIM, and threshold values to the benchmark images.

Modified cuckoo search algorithm in microscopic image segmentation of hippocampus

Microscopy research and technique, 2017

Microscopic image analysis is one of the challenging tasks due to the presence of weak correlation and different segments of interest that may lead to ambiguity. It is also valuable in foremost meadows of technology and medicine. Identification and counting of cells play a vital role in features extraction to diagnose particular diseases precisely. Different segments should be identified accurately in order to identify and to count cells in a microscope image. Consequently, in the current work, a novel method for cell segmentation and identification has been proposed that incorporated marking cells. Thus, a novel method based on cuckoo search after pre-processing step is employed. The method is developed and evaluated on light microscope images of rats' hippocampus which used as a sample for the brain cells. The proposed method can be applied on the color images directly. The proposed approach incorporates the McCulloch's method for lévy flight production in cuckoo search (C...

Performance Study of Harmony Search Algorithm for Analog Circuit Sizing

2011 International Symposium on Electronic System Design, 2011

Thresholding is the easiest method for image segmentation. Bi-level thresholding is used to create binary images, while multilevel thresholding determines multiple thresholds, which divide the pixels into multiple regions. Most of the bi-level thresholding methods are easily extendable to multilevel thresholding. However, the computational time will increase with the increase in the number of thresholds. To solve this problem, many researchers have used different bio-inspired metaheuristics to handle the multilevel thresholding problem. In this paper, optimal thresholds for multilevel thresholding in an image are selected by maximizing three criteria: Between-class variance, Kapur and Tsallis entropy using harmony search (HS) algorithm. The HS algorithm is an evolutionary algorithm inspired from the individual improvisation process of the musicians in order to get a better harmony in jazz music. The proposed algorithm has been tested on a standard set of images from the Berkeley Segmentation Dataset. The results are then compared with that of genetic algorithm (GA), particle swarm optimization (PSO), bacterial foraging optimization (BFO), and artificial bee colony algorithm (ABC). Results have been analyzed both qualitatively and quantitatively using the fitness value and the two popular performance measures: SSIM and FSIM indices. Experimental results have validated the efficiency of the HS algorithm and its robustness against GA, PSO, and BFO algorithms. Comparison with the well-known metaheuristic ABC algorithm indicates the equal performance for all images when the number of thresholds M is equal to two, three, four, and five. Furthermore, ABC has shown to be the most stable when the dimension of the problem is too high.

Improving segmentation velocity using an evolutionary method

Image segmentation plays an important role in image processing and computer vision. It is often used to classify an image into separate regions, which ideally correspond to different real-world objects. Several segmentation methods have been proposed in the literature, being thresholding techniques the most popular. In such techniques, it is selected a set of proper threshold values that optimize a determined functional criterion, so that each pixel is assigned to a determined class according to its corresponding threshold points. One interesting functional criterion is the Tsallis entropy, which gives excellent results in bi-level thresholding. However, when it is applied to multilevel thresholding, its evaluation becomes computationally expensive, since each threshold point adds restrictions, multimodality and complexity to its functional formulation. Therefore, in the process of finding the appropriate threshold values, it is desired to limit the number of evaluations of the objective function (Tsallis entropy). Under such circumstances, most of the optimization algorithms do not seem to be suited to face such problems as they usually require many evaluations before delivering an acceptable result. On the other hand, the Electromagnetism-Like algorithm is an evolutionary optimization approach which emulates the attraction–repulsion mechanism among charges for evolving the individuals of a population. This technique exhibits interesting search capabilities whereas maintains a low number of function evaluations. In this paper, a new algorithm for multilevel segmentation based on the Electromagnetism-Like algorithm is proposed. In the approach, the optimization algorithm based on the electromagnetism theory is used to find the optimal threshold values by maximizing the Tsallis entropy. Experimental results over several images demonstrate that the proposed approach is able to improve the convergence velocity, compared with similar methods such as Cuckoo search, and Particle Swarm Optimization.

An efficient optimal multilevel image thresholding with electromagnetism-like mechanism

Multimedia Tools and Applications, 2019

Segmentation process is considered a major part of various image-processing applications due to its extreme inspiration on the subsequent image analysis. Thresholding is one of the simplest techniques for segmentation. In this paper, Renyi's entropy is combined with electromagnetismlike mechanism optimization (EMO) to perform multilevel thresholding based color image segmentation. For statistical independent subsystems, Renyi's entropy shows an extensive property and is applied to find best threshold value for image segmentation. The entropic parameter α can handle the additive information that is existent in the image. The feasibility of the EMO-Renyi's based approach has been tested on various satellite and standard color images with bat algorithm (BAT), backtracking search algorithm (BSA), firefly algorithm (FA), particle swarm optimization (PSO), and wind driven optimization (WDO) for solving the multilevel color image thresholding problem. The analysis based on statistics of different optimization algorithms indicates the proposed EMO-Renyi's algorithm to be more robust and precise for multilevel color image segmentation problem. These claims have been confirmed by comparing fidelity parameters such as mean error (ME), mean squared error (MSE), peak signal-to-noise ratio (PSNR), feature similarity index (FSIM), structure similarity index (SSIM) and entropy. Experiments on standard daily-life color images are conducted to prove the effectiveness of the proposed scheme. The results show that the proposed method can produce more promising segmentation results from the aspect of objective and subjective observations.

Image Segmentation using a Refined Comprehensive Learning Particle Swarm Optimizer for Maximum Tsallis Entropy Thresholding

2013

Thresholding is one of the most important techniques for performing image segmentation. In this paper to compute optimum thresholds for Maximum Tsallis entropy thresholding (MTET) model, a new hybrid algorithm is proposed by integrating the Comprehensive Learning Particle Swarm Optimizer (CPSO) with the Powell’s Conjugate Gradient (PCG) method. Here the CPSO will act as the main optimizer for searching the near-optimal thresholds while the PCG method will be used to fine tune the best solutions obtained by the CPSO in every iteration. This new multilevel thresholding technique is called the refined Comprehensive Learning Particle Swarm Optimizer (RCPSO) algorithm for MTET. Experimental results over multiple images with different range of complexities validate the efficiency of the proposed technique with regard to segmentation accuracy, speed, and robustness in comparison with other techniques reported in the literature. The experimental results demonstrate that the proposed RCPSO a...