A Novel Method for the Generation of Region-Specific Neurons and Neural Networks from Human Pluripotent Stem Cells (original) (raw)
Stem cell-based neuronal differentiation has provided a unique opportunity for disease modeling and regenerative medicine. We have reported a novel culture condition and method for generating neuronal progenitors and neural networks from human embryonic and induced pluripotent stem cells without any genetic manipulation. Neurospheres generated under 10% CO2 with Supplemented Knockout Serum Replacement Medium (SKSRM) had doubled the expression of NESTIN, PAX6 and FOXG1 genes compared to the neurospheres generated under 5% CO2. Furthermore, an additional step (AdStep) was introduced to fragment the neurospheres, which increased the expression of neuronal progenitor genes NEUROD1, NEUROG2, TBR1, TBR2, and NOTCH1 and the formation of the neuroepithelial-type cells. With the supplements, neuronal progenitors further differentiated into different layers of cortical, pyramidal, GABAergic, glutamatergic, cholinergic, dopaminergic and purkinje neurons within 27-40 days, which is faster than traditional neurodifferentiation protocols (42-60 days). Furthermore, our in vivo studies indicated that neuronal progenitors derived under our culture conditions with "AdStep" showed significantly increased neurogenesis in Severe Combined Immunodeficiency (SCID) mouse brains. This neurosphere-based neurodifferentiation protocol is a valuable tool for studies neurogenesis, neuronal transplantation and high throughput screening assays.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact