Self-interaction of Abutilon mosaic virus replication initiator protein (Rep) in plant cell nuclei (original) (raw)
Related papers
Host DNA Replication Is Induced by Geminivirus Infection of Differentiated Plant Cells
THE PLANT CELL ONLINE, 2002
The geminivirus Tomato golden mosaic virus (TGMV) replicates in differentiated plant cells using host DNA synthesis machinery. We used 5-bromo-2-deoxyuridine (BrdU) incorporation to examine DNA synthesis directly in infected Nicotiana benthamiana plants to determine if viral reprogramming of host replication controls had an impact on host DNA replication. Immunoblot analysis revealed that up to 17-fold more BrdU was incorporated into chromosomal DNA of TGMV-infected versus mock-infected, similarly treated healthy leaves. Colocalization studies of viral DNA and BrdU demonstrated that BrdU incorporation was specific to infected cells and was associated with both host and viral DNA. TGMV and host DNA synthesis were inhibited differentially by aphidicolin but were equally sensitive to hydroxyurea. Short BrdU labeling times resulted in some infected cells showing punctate foci associated with host DNA. Longer periods showed BrdU label uniformly throughout host DNA, some of which showed condensed chromatin, only in infected nuclei. By contrast, BrdU associated with viral DNA was centralized and showed uniform, compartmentalized labeling. Our results demonstrate that chromosomal DNA is replicated in TGMV-infected cells.
Journal of Virology, 2003
Potato virus X were exploited to devise an in planta system for functional analysis of the geminivirus replicationassociated protein (Rep) in transgenic Nicotiana benthamiana line pOri-2. This line contains an integrated copy of a tandem repeat of the ACMV origin of replication flanking nonviral sequences that can be mobilized and replicated by Rep as an episomal replicon. A Rep-GFP fusion protein can also mobilize and amplify the replicon, facilitating Rep detection in planta. The activity of Rep and its mutants, Rep-mediated host response, and the correlation between Rep intracellular localization and biological functions could be effectively assessed by using this in planta system. Our results indicate that modification of amino acid residues R 2 , R 5 , R 7 and K 11 or H 56 , L 57 and H 58 prevent Rep function in replication. This defect correlates with possible loss of Rep nuclear localization and inability to trigger the host defense mechanism resembling a hypersensitive response.
Journal of Biological Chemistry, 2001
The minimal DNA binding domain of the replicationassociated protein (Rep) of Tomato leaf curl New Delhi virus was determined by electrophoretic mobility gel shift analysis and co-purification assays. DNA binding activity maps to amino acids 1-160 (Rep-(1-160)) of the Rep protein and overlaps with the protein oligomerization domain. Transient expression of Rep protein (Rep-(1-160)) was found to inhibit homologous viral DNA accumulation by 70-86% in tobacco protoplasts and in Nicotiana benthamiana plants. The results obtained showed that expression of N-terminal sequences of Rep protein could efficiently interfere with DNA binding and oligomerization activities during virus infection. Surprisingly, this protein reduced accumulation of the African cassava mosaic virus, Pepper huasteco yellow vein virus and Potato yellow mosaic virus by 22-48%. electrophoretic mobility shift assays and co-purification studies showed that Rep-(1-160) did not bind with high affinity in vitro to the corresponding common region sequences of heterologous geminiviruses. However, Rep-(1-160) formed oligomers with the Rep proteins of the other geminiviruses. These data suggest that the regulation of virus accumulation may involve binding of the Rep to target DNA sequences and to the other Rep molecules during virus replication. Geminiviruses cause economically significant diseases in a wide range of cereal, vegetable, and fiber crops (1). These viruses have a single-stranded DNA genome that is replicated in nuclei of infected cells by a rolling circle mechanism (2, 3). Of the different gene products encoded by the virus, only AC1, the replication-associated protein (Rep), is essential for viral DNA replication. The first step in the replication process involves recognition of specific DNA sequences referred to as iterons, (4), by the Rep protein in the common region (CR) 1 of the virus genome. Most iteron sequences occur as direct repeat motifs of 6-12 base pairs between the TATA box and the start site of
Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication
Molecular Plant Pathology, 2004
Geminiviruses constitute a large family of plant-infecting viruses with small, single-stranded DNA genomes that replicate through double-stranded intermediates. Because of their limited coding capacity, geminiviruses supply only the factors required to initiate their replication and use plant nuclear DNA polymerases to amplify their genomes. Many geminiviruses replicate in differentiated cells that no longer contain detectable levels of host DNA polymerases and associated factors. To overcome this barrier, geminiviruses induce the accumulation of DNA replication machinery in mature plant cells by reprogramming host gene expression. The mammalian DNA tumour viruses activate host genes required for DNA replication by binding to the retinoblastoma protein, a negative regulator of cell cycle progression, and relieving repression through the E2F family of transcription factors. In this review, we discuss recent experiments showing that geminiviruses also modulate components of the retinoblastoma/E2F transcription regulatory network to induce quiescent plant cells to re-enter the cell cycle and regain the capacity to support high levels of DNA replication. Regulation of the cell division cycle and its integration with developmental pathways is complex, with many factors, including hormones, sucrose and environmental signals, controlling reentry into the plant cell cycle. Geminivirus interactions with these regulatory networks are likely to determine if and where they can replicate their genomes in different plant tissues and hosts.
The family ofGeminiviridaeconsists of more than 500 circular single-stranded (ss) DNA viral species that can infect numerous dicot and monocot plants. Geminiviruses replicate their genome in the nucleus of a plant cell, taking advantage of the host’s DNA replication machinery. For converting their DNA into double-stranded DNA, and subsequent replication, these viruses rely on host DNA polymerases. However, the priming of the very first step of this process, i.e. the conversion of incoming circular ssDNA into a dsDNA molecule, has remained elusive for almost 30 years. In this study, sequencing of melon (Cucumis melo) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in theDNA Primase Large subunit(PRiL) of all accessions that exhibited resistance upon a challenge with ToLCNDV. Silencing of (nativ...
Virology, 2001
Geminiviruses replicate their small, single-stranded DNA genomes through double-stranded DNA intermediates in plant nuclei using host replication machinery. Like most dicot-infecting geminiviruses, tomato golden mosaic virus encodes a protein, AL3 or C3, that greatly enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that AL3 forms oligomers and interacts with the viral replication initiator AL1. Experiments reported here established that AL3 also interacts with a plant homolog of the mammalian tumor suppressor protein, retinoblastoma (pRb). Analysis of truncated AL3 proteins indicated that pRb and AL1 bind to similar regions of AL3, whereas AL3 oligomerization is dependent on a different region of the protein. Analysis of truncated AL1 proteins located the AL3-binding domain between AL1 amino acids 101 and 180 to a region that also includes the AL1 oligomerization domain and the catalytic site for initiation of viral DNA replication. Interestingly, the AL3-binding domain was fully contiguous with the domain that mediates AL1/pRb interactions. The potential significance of AL3/pRb binding and the coincidence of the domains responsible for AL3, AL1, and pRb interactions are discussed.
Virology, 2003
Geminiviruses replicate their small, single-stranded DNA genomes in plant nuclei using host replication machinery. Similar to most dicotyledonous plant-infecting geminiviruses, Tomato yellow leaf curl Sardinia virus (TYLCSV) encodes a protein, REn, that enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that REn protein from another geminivirus, Tomato golden mosaic virus (TGMV), forms oligomers and interacts with Rep protein, the only viral protein essential for replication. It has been shown that both proteins from TGMV also interact with a plant homolog of the mammalian tumor suppressor retinoblastoma protein (RBR). By using yeast two-hybrid technology and the TYLCSV REn protein as bait, we have isolated three clones of the proliferating cell nuclear antigen (PCNA) of Arabidopsis thaliana, a ring-shaped protein that encircles DNA and plays an essential role in eukaryotic chromosomal DNA replication. We also demonstrate by the two-hybrid system and a pull-down assay that REn interacts with tomato PCNA (LePCNA). Analysis of truncated proteins has located the REn-binding domain of LePCNA between amino acids 132 and 187, whereas all REn deletions used abolished or decreased dramatically its ability to interact with PCNA. Tomato PCNA also interacts with TYLCSV Rep. We propose that the interaction between PCNA and REn/Rep takes place during virus infection, inducing the assembly of the plant replication complex (replisome) close to the virus origin of replication.
Journal of General Virology, 2008
We have devised an in planta system for functional analysis of the replication-associated protein (Rep) of African cassava mosaic virus (ACMV). Using this assay and PCR-based random mutagenesis, we have identified an ACMV Rep mutant that failed to trigger the hypersensitive response (HR), but had an enhanced ability to initiate DNA replication. The mutant Rep-green fluorescent protein (GFP) fusion protein was localized to the nucleus. Sequence analysis showed that the mutated Rep gene had three nucleotide changes (A6AT, T375AG and G852AA); only the A6AT transversion resulted in an amino acid substitution (Arg to Ser), which is at the second residue in the 358 amino acid ACMV Rep protein. Our results indicate that a single amino acid can alter the differential ability of ACMV Rep to trigger the host-mediated HR defence mechanism and to initiate viral DNA replication. The implications of this finding are discussed in the context of plant-virus interactions.
We have devised an in planta system for functional analysis of the replication-associated protein (Rep) of African cassava mosaic virus (ACMV). Using this assay and PCR-based random mutagenesis, we have identified an ACMV Rep mutant that failed to trigger the hypersensitive response (HR), but had an enhanced ability to initiate DNA replication. The mutant Rep-green fluorescent protein (GFP) fusion protein was localized to the nucleus. Sequence analysis showed that the mutated Rep gene had three nucleotide changes (A6AT, T375AG and G852AA); only the A6AT transversion resulted in an amino acid substitution (Arg to Ser), which is at the second residue in the 358 amino acid ACMV Rep protein. Our results indicate that a single amino acid can alter the differential ability of ACMV Rep to trigger the host-mediated HR defence mechanism and to initiate viral DNA replication. The implications of this finding are discussed in the context of plant-virus interactions.