Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies (original) (raw)

Physiological and pathophysiological regulation of regional adipose tissue in the development of insulin resistance and type 2 diabetes

Acta Physiologica, 2006

Aim: To survey the latest state of knowledge concerning the regulation of regional adipocytes and their role in the development of insulin resistance and type 2 diabetes. Methods: Data from the English-language literature on regional adipocytes, including abdominal, intramyocellular, intrahepatic and intra-islet fat as well as the adipokines and their relations to insulin resistance and type 2 diabetes, were reviewed. Results: It is not the total amount of fat but the fat that resides within skeletal muscle cell (intramyocellular fat), hepatocytes and intra-abdominally (visceral fat), via systemic and local secretion of several adipokines, that influences insulin resistance. Among the adipokines that relate to insulin resistance, adiponectin and leptin appear to have clinical relevance to human insulin resistance and others may also contribute, but their role is still inconclusive. The intra-islet fat also adversely affects b-cell function and number (b-cell apoptosis), eventually leading to deterioration of glucose tolerance. The abnormal location of fat observed in patients with type 2 diabetes and their relatives is conceivably partly the results of the genetically determined, impaired mitochondrial fatty acid oxidative capacity. Restriction or elimination of the fat load by weight control, regular exercise and thiazolidinediones has been shown to improve insulin resistance and b-cell function and to delay the development of type 2 diabetes. Conclusion: These data support the plausibility of an essential role of regional adipose tissue in the development of insulin resistance and type 2 diabetes. Keywords adiponectin, free fatty acid, hepatic fat, insulin resistance, intramyocellular fat, leptin, mitochondrial dysfunction, visceral fat. Adipose tissue distribution in the human body can generally be categorized into upper-and lower-body deposits. Upper-body fat essentially includes subcutaneous fat deposits located in the upper trunk and the abdominal region as well as intra-abdominal deposits. Visceral fat, located in the abdominal cavity, is composed of omental and mesenteric fat. Lower-body fat, the largest fat deposit, essentially includes subcutaneous fat in the gluteal and femoral regions. Obesity is related to the expansion of all fat deposits, the largest of which is in the subcutaneous adipose tissue. It is well accepted that upper-body obesity (or android-type or truncal or abdominal obesity) is associated with the increased risk of several metabolic abnormalities, several of which are the consequences of increased insulin resistance. The metabolic syndrome which includes at least glucose intolerance, hypertension and dyslipidaemia, is strongly associated with upper-body, but not lower-body, adiposity. This discrepant association between fat location and insu

Adiposity and Insulin Resistance in Humans: The Role of the Different Tissue and Cellular Lipid Depots

Human adiposity has long been associated with insulin resistance and increased cardiovascular risk, and abdominal adiposity is considered particularly adverse. Intra-abdominal fat is associated with insulin resistance, possibly mediated by greater lipolytic activity, lower adiponectin levels, resistance to leptin, and increased inflammatory cytokines, although the latter contribution is less clear. Liver lipid is also closely associated with, and likely to be an important contributor to, insulin resistance, but it may also be in part the consequence of the lipogenic pathway of insulin action being up-regulated by hyperinsulinemia and unimpaired signaling. Again, intramyocellular triglyceride is associated with muscle insulin resistance, but anomalies include higher intramyocellular triglyceride in insulin-sensitive athletes and women (vs men). Such issues could be explained if the "culprits" were active lipid moieties such as diacylglycerol and ceramide species, dependent more on lipid metabolism and partitioning than triglyceride amount. Subcutaneous fat, especially gluteofemoral, appears metabolically protective, illustrated by insulin resistance and dyslipidemia in patients with lipodystrophy. However, some studies suggest that deep sc abdominal fat may have adverse properties. Pericardial and perivascular fat relate to atheromatous disease, but not clearly to insulin resistance. There has been recent interest in recognizable brown adipose tissue in adult humans and its possible augmentation by a hormone, irisin, from exercising muscle. Brown adipose tissue is metabolically active, oxidizes fatty acids, and generates heat but, because of its small and variable quantities, its metabolic importance in humans under usual living conditions is still unclear. Further understanding of specific roles of different lipid depots may help new approaches to control obesity and its metabolic sequelae. (Endocrine Reviews 34: 463-500, 2013)

Insulin Signaling in Human Visceral and Subcutaneous Adipose Tissue In Vivo

Diabetes, 2006

In this study, we evaluated the activation of various insulin signaling molecules in human fat in vivo and compared signaling reactions in visceral and subcutaneous fat depots. Paired abdominal omental and subcutaneous fat biopsies were obtained from nonobese subjects with normal insulin sensitivity under basal conditions and 6 and 30 min following administration of intravenous insulin. Insulin receptor phosphorylation was more intense and rapid and insulin receptor protein content was greater in omental than in subcutaneous adipose tissue (P < 0.05). Insulininduced phosphorylation of Akt also occurred to a greater extent and earlier in omental than in subcutaneous fat (P < 0.05) in the absence of significant changes in Akt protein content. Accordingly, phosphorylation of the Akt substrate glycogen synthase kinase-3 was more responsive to insulin stimulation in omental fat. Protein content of extracellular signal-regulated kinase (ERK)-1/2 was threefold higher in omental than in subcutaneous fat (P < 0.05), and ERK phosphorylation showed an early 6-min peak in omental fat, in contrast with a more gradual increase observed in subcutaneous fat. In conclusion, the adipocyte insulin signaling system of omental fat shows greater and earlier responses to insulin than that of subcutaneous fat. These findings may contribute to explain the biological diversity of the two fat depots. Diabetes 55:952-961, 2006

Depot-specific differences in adipose tissue gene expression in lean and obese subjects

Diabetes, 1998

Intra-abdominal and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral, but not subcutaneous, fat with obesity-related cardiovascular and metabolic problems. Because the molecular mechanisms contributing to these differences are not yet defined, we compared by reverse transcription-polymerase chain reaction the expression of 15 mRNAs that encode proteins of known importance in adipocyte function in paired omental and subcutaneous abdominal biopsies. No difference in mRNA expression between omental and subcutaneous adipose tissue was observed for hormone sensitive lipase, lipoprotein lipase, 6-phosphofructo-l-kinase, insulin receptor substrate 1, p85a regulatory subunit of phosphatidylinositol-3-kinase, and Rad. Total amount of insulin receptor expression was significantly higher in omental adipose tissue. Most of this increase was accounted for by expression of the differentially spliced insulin receptor lacking exon 11, which is considered to transmit the insulin signal less efficiently than the insulin receptor with exon 11. Perhaps consistent with a less efficient insulin signaling, a twofold reduction in GLUT4, glycogen synthase, and leptin mRNA expression was observed in omental adipose tissue. Finally peroxisome proliferator activated receptor-Y (PPAR-Y) mRNA levels were significantly lower in visceral adipose tissue in subjects with a BMI <30 kg/m 2 , but not in obese subjects, indicating that relative PPAR-Y expression is increased in omental fat in obesity. This suggests that altered expression of PPAR-Y might play a role in adipose tissue distribution and expansion. Diabetes 47:98-103, 1998 I ntra-abdominal body fat accumulation is an independent risk factor of obesity-related health problems, including NIDDM, cardiovascular disease, hypertension, and hyperlipidemia, and is associated with a significant increase in overall morbidity and mortality (1,2).

State of the art paper Biochemistry of adipose tissue: an endocrine organ

Archives of Medical Science, 2013

Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.

Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells

Aim/hypothesis The distinct metabolic properties of visceral and subcutaneous adipocytes may be due to inherent characteristics of the cells that are resident in each fat depot. To test this hypothesis, human adipocytes were differentiated in vitro from precursor stromal cells obtained from visceral and subcutaneous fat depots and analysed for genetic, biochemical and metabolic endpoints. Methods Stromal cells were isolated from adipose tissue depots of nondiabetic individuals. mRNA levels of adipocytespecific proteins were determined by real-time RT-PCR. Insulin signalling was evaluated by immunoblotting with specific antibodies. Glucose transport was measured by a 2-deoxy-glucose uptake assay. Adiponectin secretion in the adipocyte-conditioned medium was determined by a specific RIA. Results With cell differentiation, mRNA levels of PPARG, C/EBPα (also known as CEBPA), AP2 (also known as GTF3A), GLUT4 (also known as SLC2A4) were markedly upregulated, whereas GLUT1 (also known as SLC2A1) mRNA did not change. However, expression of C/EBPα, AP2 and adiponectin was higher in subcutaneous than in visceral adipocytes. By contrast, adiponectin was secreted at threefold higher rates by visceral than by subcutaneous adipocytes while visceral adipocytes also showed two- to threefold higher insulin-stimulated glucose uptake. Insulininduced phosphorylation of the insulin receptor, IRS proteins, Akt and extracellular signal-regulated kinase-1/2 was more rapid and tended to decrease at earlier time-points in visceral than in subcutaneous adipocytes. Conclusions/interpretation Subcutaneous and visceral adipocytes, also when differentiated in vitro from precursor stromal cells, retain differences in gene expression, adiponectin secretion, and insulin action and signalling. Thus, the precursor cells that reside in the visceral and subcutaneous fat depots may already possess inherent and specific metabolic characteristics that will be expressed upon completion of the differentiation programme.

Do regional differences in adipocyte biology provide new pathophysiological insights

Trends in Pharmacological Sciences, 2003

Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.