The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9 (original) (raw)
Related papers
PLoS ONE, 2010
Background: Methane (CH 4 ) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO 2 ). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.
Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies
Animal, 2013
Ruminant-derived methane (CH4), a potent greenhouse gas, is a consequence of microbial fermentation in the digestive tract of livestock. Development of mitigation strategies to reduce CH4emissions from farmed animals is currently the subject of both scientific and environmental interest. Methanogens are the sole producers of ruminant CH4, and therefore CH4abatement strategies can either target the methanogens themselves or target the other members of the rumen microbial community that produce substrates necessary for methanogenesis. Understanding the relationship that methanogens have with other rumen microbes is crucial when considering CH4mitigation strategies for ruminant livestock. Genome sequencing of rumen microbes is an important tool to improve our knowledge of the processes that underpin those relationships. Currently, several rumen bacterial and archaeal genome projects are either complete or underway. Genome sequencing is providing information directly applicable to CH4mi...
2010
Methane emissions from ruminant livestock are considered to be one of the more potent forms of greenhouse gases contributing to global warming. Many strategies to reduce emissions are targeting the methanogens that inhabit the rumen, but such an approach can only be successful if it targets all the major groups of ruminant methanogens. Therefore, basic knowledge of the diversity of these microbes in breeds of buffalo is required. Therefore, the methanogenic community in the rumen of Surti buffaloes was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) gene. A total of 76 clones were identified, revealing 14 different sequences (phylotypes). All 14 sequences were similar to methanogens belonging to the order Methanobacteriales. Within Methanobacteriales, 12 clones (6 OTUs) were similar to Methanosphaera stadtmanae and the remaining 8 phylotypes (64 clones) were similar to unclassified Methanobacteriales. Overall, members of the Methanobacteriales dominated the mcrA clone library in the rumen of Surti buffalo. Further studies and effective strategies can be made to inhibit the growth of Methanobacteriales to reduce methane emission from the rumen which would help in preventing global warming.
The Complete Genome Sequence of Methanobrevibacter sp. AbM4
Standards in genomic sciences, 2013
Methanobrevibacter sp. AbM4 was originally isolated from the abomasal contents of a sheep and was chosen as a representative of the Methanobrevibacter wolinii clade for genome sequencing. The AbM4 genome is smaller than that of the rumen methanogen M. ruminantium M1 (2.0 Mb versus 2.93 Mb), encodes fewer open reading frames (ORFs) (1,671 versus 2,217) and has a lower G+C percentage (29% versus 33%). Overall, the composition of the AbM4 genome is very similar to that of M1 suggesting that the methanogenesis pathway and central metabolism of these strains are highly similar, and both organisms are likely to be amenable to inhibition by small molecule inhibitors and vaccine-based methane mitigation technologies targeting these conserved features. The main differences compared to M1 are that AbM4 has a complete coenzyme M biosynthesis pathway and does not contain a prophage or non-ribosomal peptide synthase genes. However, AbM4 has a large CRISPR region and several type I and type II re...
Applied and environmental …, 2009
Cattle with high feed efficiencies (designated "efficient") produce less methane gas than those with low feed efficiencies (designated "inefficient"); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using approximately 800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, a...
Microbial ecosystem and methanogenesis in ruminants
animal, 2010
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2and CO2as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen (‘H2’ from this point on) is the key element that drives methane production in the rumen. Among H2produc...
Journal of Bacteriology, 2004
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L-and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most inteincontaining proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Brazilian Journal of Microbiology, 2011
Methane emissions from ruminant livestock are considered to be one of the more potent forms of greenhouses gases contributing to global warming. Many strategies to reduce emissions are targeting the methanogens that inhabit the rumen, but such an approach can only be successful if it targets all the major groups of ruminant methanogens. Therefore, a thorough knowledge of the diversity of these microbes in breeds of buffaloes, as well as in response to geographical location and different diets, is required. Therefore, molecular diversity of rumen methanogens in Surti buffaloes was investigated using 16S rRNA gene libraries prepared from pooled rumen contents from three Surti buffaloes. A total of 171 clones were identified revealing 23 different sequences (phylotypes). Of these 23 sequences, twelve sequences (12 OTUs, 83 clones) and 10 sequences (10 OTUs, 83 clones) were similar to methanogens belonging to the orders Methanomicrobiales and Methanobacteriales, and the remaining 1 phylotype (5 clones) were similar to Methanosarcina barkeri. These unique sequences clustered within a distinct and strongly supported phylogenetic group. Further studies and effective strategies can be made to inhibit the growth of Methanomicrobiales and Methanobacteriales phylotypes to reduce the methane emission from rumen and thus help in preventing global warming.
Gene, 2013
In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae. Out of eighteen OTUs identified from mcrA gene library, fifteen clustered with order Methanobacteriales, two resemble with Methanomicrobiales and remaining one grouped with Methanosarcinales. These results revealed that Methanobrevibacter phylotype was predominantly present in Karan Fries crossbred cattle fed on high fibrous diet containing wheat straw. Compared to 16S rRNA gene, mcrA gene OTUs clustered in three orders providing better insights of rumen methanogens diversity in cattle.
Isolation and Identification of Ruminal Methanogens from Grazing Cattle
Current Microbiology, 2000
To obtain information on the diversity of ruminal methanogens in grazing animals, three ruminal methanogens from grazing cattle were characterized and identified. Two of the isolates were rod-shaped, with one staining Gram-positive and being non-motile (BRM9), and the other (BRM16) staining Gram-negative and being motile. These isolates grew only on H 2 /CO 2 and formate, and optimally at 38°C and pH 6.5-7.0. The third isolate (CM1) was non-motile, pseudosarcina-shaped, and grew on H 2 /CO 2 , acetate, and methyl-containing compounds, with optimal growth at 40°C and pH 6.5. DNA was prepared from the three isolates, and their 16S rRNA genes were sequenced. Phenotypic data and comparisons of nearly complete 16S rDNA sequences showed that BRM9, BRM16, and CM1 are strains of Methanobacterium formicicum, Methanomicrobium mobile, and Methanosarcina barkeri respectively. To the best of our knowledge, this is the first information on ruminal methanogens in cattle maintained under grazing management.