Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation (original) (raw)
Related papers
Cx30.2 can form heteromeric gap junction channels with other cardiac connexins
Biochemical and Biophysical Research Communications, 2008
Since most cells in the heart co-express multiple connexins, we studied the possible heteromeric interactions between connexin30.2 and connexin40, connexin43 or connexin45 in transfected cells. Double-label immunofluorescence microscopy showed that connexin30.2 extensively co-localized with each co-expressed connexin at appositional membranes. When Triton X-100 solubilized connexons were affinity purified from co-expressing cells, connexin30.2 was isolated together with connexin40, connexin43, or connexin45. Co-expression of connexin30.2 with connexin40, connexin43, or connexin45 did not significantly reduce total junctional conductance. Gap junction channels in cells co-expressing connexin30.2 with connexin43 or connexin45 exhibited voltage-dependent gating intermediate between that of either connexin alone. In contrast, connexin30.2 dominated the voltage-dependence when co-expressed with connexin40. Our data suggest that connexin30.2 can form heteromers with the other cardiac connexins and that mixed channel formation will influence the gating properties of gap junctions in cardiac regions that co-express these connexins.
Gap junction channels formed by coexpressed connexin40 and connexin43
American journal of physiology. Heart and circulatory physiology, 2001
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel c...
Restricted distribution of connexin40, a gap junctional protein, in mammalian heart
Circulation Research, 1994
Connexin40 (Cx40) is a member of the connexin family of gap junction proteins. Its mRNA, abundant in lung, is also present in mammalian heart, although in lower amount. Rabbit antipeptide antibodies directed to the COOH terminus (residues 335 to 356) of rat Cx40 were characterized to investigate the distribution of Cx40 in rat and guinea pig cardiac tissues. The affinity-purified antibodies detect specifically a major protein (Mr, 40000) in immunoblots of total extracts from rat lung and rat and guinea pig heart. In sections of guinea pig atrial tissue treated for immunofluorescence, a strong labeling associated with myocytes was seen with a distribution consistent with that of intercalated disks. The results of immunoelectron microscopy carried out with guinea pig atrial tissue showed that epitopes recognized by these antibodies were exclusively associated with gap junctions. These results, added to those of control experiments, demonstrate that antibodies 335-356 are specific for Cx40. Doublelabeling experiments carried out with lung sections using anti-factor VIII and anti-Cx40 antibodies suggest that Cx40 is expressed in blood vessel endothelial cells. In guinea pig and rat heart sections, investigated using both immunofluorescence and immunoperoxidase techniques, a signal was also found to be associated with vascular walls. In guinea pig heart, only atrial myocytes are Cx4O-positive. No labeling was detected in ventricular myocytes, including those of the His bundle and the bundle branches, which otherwise do express connexin43 (Cx43). In rat heart Cx4O -expressing myocytes are localized in the conduction system, ie, the His bundle, the bundle branches, and the Purkinje fibers. Cx43 is not detected either in the His bundle or in the proximal parts of the bundle branches, and consequently, Cx4O is the first connexin demonstrated in this region of the rat conduction system. Cx40 was not detected in the working ventricular myocytes. Doublelabeling experiments carried out with hen anti-Cx43 antibodies and rabbit anti-Cx4O antibodies demonstrated that, in tissues expressing both Cx43 and Cx4O, these two connexins were localized in the same immunoreactive sites. A few sites, however, appear to contain only one or the other of these two connexins. (Circ Res. 1994;74:839-851.)
Functional analysis of hemichannels and gap-junctional channels formed by connexins 43 and 46
2010
The gap junctions (GJs) mediating direct cell-cell interaction are formed by clusters of membrane-spanning proteins known as connexins (Cxs). These channels play a key role in signal transmission, and their permeability, time-, and voltage-dependence are governed by the properties of the specific Cxs forming the gap junctions. Retinal pigment epithelium (RPE) cells express Cx43 and Cx46. Here, we employed a heterologous expression system to explore the functional properties of the hemichannels and GJs that could be formed by different combinations of these Cxs. Specifically, we examined the response kinetics of GJs formed by pairing cells expressing Cx43 or Cx46, or those expressing both, i.e., designated as Cx43•Cx46. Methods: The Xenopus oocyte expression system and a two-electrode voltage clamp technique were used to study the properties of hemichannels and GJs formed in oocytes transfected with Cx43 and/or Cx46 mRNA. Results: Depolarizing voltages activated hemicurrents of similar amplitude from single oocytes transfected with Cx46 or Cx43•Cx46, but not in oocytes expressing Cx43 alone. Incorporating Cx43 with Cx46 altered the gating charge, but not the voltage sensitivity of the hemichannels. In addition, Cx43•Cx46 hemichannel currents exhibited faster activation kinetics than homomeric Cx46 hemichannels. Both homotypic GJs formed by Cx43 and Cx46, and heteromeric Cx43•Cx46 GJs exhibited large junctional conductances with amplitudes of 6.5±3.0 μS (Cx43), 8.9±3.4 μS (Cx46), and 8.5±1.8 μS (Cx43•46); a significantly lower conductance (1.8±0.7 μS) was observed for heterotypic GJs formed by Cx43 and Cx46. There were also differences in their gating kinetics. Whereas the kinetics of homotypic Cx46 could be described by a single exponential function (τ=0.91 s), double exponential functions were required for homotypic Cx43 (τ1=0.24, τ2=3.4 s), heterotypic Cx43/Cx46 (τ1=0.29, τ2=3.6 s), and heteromeric Cx43•Cx46/Cx43•Cx46 (τ1=1.2, τ2=8.1 s) junctions. Conclusions: The failure of oocytes expressing Cx43 to exhibit hemichannel activity is an intrinsic membrane property of this Cx, and cannot be attributed to a lack of expression; western blot analysis showed clearly that Cx43 was expressed in oocytes in which it was injected. Our results provide further evidence that Cx43 and Cx46 form both heterotypic and heteromeric channels when co-expressed, an indication that various combinations of Cxs may participate in gap-junctional communication between RPE cells. Gap junctional channels are found in tissues throughout the body and play a key role in signal transmission and other cellular processes by allowing for direct cell-cell communication, i.e., the intercellular exchange of ions, metabolites, and small peptides having a molecular mass of ≤1 kDa [1-4]. The building blocks of the gap-junctional channel are connexins (Cxs), a family of homologous transmembrane proteins whose members are distinguished based on their predicted molecular mass in kDa, e.g., Cx25, Cx31, and Cx45. Six Cx polypeptides oligomerize to form a hemichannel or connexon, which docks with a connexon from an adjacent cell to create an aqueous pore that bridges the ~2 nm intercellular "gap." Variation in Cx assembly can lead to multiple gap-junctional configurations exhibiting very different communication properties [5]. Homotypic gap
Redistribution of connexin45 in gap junctions of connexin43-deficient hearts
Cardiovascular Research, 2002
Objective: Adult ventricular myocytes express two gap junction channel proteins: connexin43 (Cx43) and connexin45 (Cx45). Cx43-deficient mice exhibit slow ventricular epicardial conduction, suggesting that Cx43 plays an important role in intercellular coupling in the ventricle. Cx45 is much less abundant than Cx43 in working ventricular myocytes. Its role in ventricular conduction has not been defined, nor is it known whether expression or distribution of Cx45 is altered in Cx43-deficient mice. The present study was undertaken to determine (1) whether expression of Cx45 is upregulated and (2) whether gap junction structure and distribution are altered in
Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells
Journal of Cell Science, 2004
solubilized connexons from co-expressing cells by centrifugation through sucrose gradients or by affinity purification using a Ni-NTA column showed no evidence of mixing of Cx26 and Cx43. These results contrast with our observations in cells co-expressing other connexins with Cx43 and suggest that Cx26 and Cx43 do not form heteromeric hemichannels. Moreover, the incorporation of Cx26 and Cx43 into oligomers and into the membrane were similarly affected by treatment of co-expressing cells with brefeldin A or nocodazole, suggesting that the lack of mixing is due to incompatibility of these connexins, not to differences in biosynthetic trafficking.
Biology of the Cell, 2002
Gap junction channels provide the basis for the electrical syncytial properties of the heart as a communicating electrical network. Cardiac gap junction channels are predominantly composed of connexin 40 or connexin 43. The conductance of these channels (g j ) can be regulated pharmacologically: substances which activate protein kinase C, protein kinase A or protein kinase G may alter Cx43 gap junction conductance. However, for PKC, this seems to be subtype specific. Thus, antiarrhythmic peptides can enhance g j via activation of PKCe, while FGF-2 reduces g j via PKCe. Lipophilic drugs can uncouple the channels. Besides an acute regulation of g j , the expression of the cardiac connexins can also be regulated. A decrease in Cx43 with a concomitant increase in Cx40 has been found in end-stage failing hearts, while in renovascular hypertension, an increase in Cx43 has been described. Mediators like endothelin-1, angiotensin-II, TGF-b, VEGF, and cAMP have been shown to increase Cx43. Interestingly, endothelin-1 and angiotensin-II increased Cx43 but did not affect Cx40 expression. In contrast, in humans suffering from atrial fibrillation (AF), the content in Cx40 can be enhanced while Cx43 was unaltered, although in several other studies, other changes of the cardiac connexins were found, which might be related to the type of AF. Regarding the role of calcium, the content in both Cx40 and Cx43 was decreased in cultured neonatal rat cardiomyocytes after 24 h administration of 100 nM verapamil. Thus, gap junctional channels can be affected pharmacologically either acutely by modulating gap junction conductance or chronically by altering gap junction protein expression. Interestingly, it appears that the expression of Cx43 and Cx40 can be differentially regulated.
The connexin43 carboxyl terminus and cardiac gap junction organization
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.