Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site (original) (raw)

Hepatitis C Virus IRES RNA-Induced Changes in the Conformation of the 40 S Ribosomal Subunit

Science, 2001

Initiation of protein synthesis in eukaryotes requires recruitment of the 40 S ribosomal subunit to the messenger RNA (mRNA). In most cases, this depends on recognition of a modified nucleotide cap on the 5′ end of the mRNA. However, an alternate pathway uses a structured RNA element in the 5′ untranslated region of the messenger or viral RNA called an internal ribosomal entry site (IRES). Here, we present a cryo-electron microscopy map of the hepatitis C virus (HCV) IRES bound to the 40 S ribosomal subunit at about 20 Å resolution. IRES binding induces a pronounced conformational change in the 40 S subunit and closes the mRNA binding cleft, suggesting a mechanism for IRES-mediated positioning of mRNA in the ribosomal decoding center.

Proteins of the human 40S ribosomal subunit involved in hepatitis C IRES Binding as revealed from fluorescent labeling

Biochemistry (Moscow), 2013

The initiation of translation in eukaryotes occurs with the participation of a large set of protein factors involved in the search for the start codon AUG of mRNA by the 40S ribosomal subunit associated with the ternary complex eIF2⋅Met tRNA i Met ⋅GTP (see for review). A character istic feature of eukaryotic mRNAs is the presence of a spe cific structural element at their 5′ ends named the cap, which is directly involved in this process . However, many viruses, whose genomes are represented by a single stranded RNA lacking a 5′ cap, are able to realize their genetic information without the participation of a number of translation initiation factors. The functional role of these factors is performed by a highly structured fragment in the 5′ untranslated region (5′ UTR) of the genomic RNA (gRNA) called IRES (Internal Ribosome Entry Site) [3 5].

Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome

Nucleic Acids Research, 2008

The 5'-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.

HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

Nucleic Acids Research, 2013

Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select Met-tRNA Met i . These data are the first demonstration at nucleotide resolution of direct IRES-rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors.

Mechanism of ribosome recruitment by hepatitis C IRES RNA

Rna, 2001

Many viruses and certain cellular mRNAs initiate protein synthesis from a highly structured RNA sequence in the 59 untranslated region, called the internal ribosome entry site (IRES). In hepatitis C virus (HCV), the IRES RNA functionally replaces several large initiation factor proteins by directly recruiting the 43S particle. Using quantitative binding assays, modification interference of binding, and chemical and enzymatic footprinting experiments, we show that three independently folded tertiary structural domains in the IRES RNA make intimate contacts to two purified components of the 43S particle: the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). We measure the affinity and demonstrate the specificity of these interactions for the first time and show that the high affinity interaction of IRES RNA with the 40S subunit drives formation of the IRES RNA•40S•eIF3 ternary complex. Thus, the HCV IRES RNA recruits 43S particles in a mode distinct from both eukaryotic cap-dependent and prokaryotic ribosome recruitment strategies, and is architecturally and functionally unique from other large folded RNAs that have been characterized to date.

LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex

Nucleic Acids Research, 2015

As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a 'kissing complex' between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation.

HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation

Nature Structural & Molecular Biology, 2012

The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders.

Riboproteomics of the Hepatitis C Virus Internal Ribosomal Entry Site

Journal of Proteome Research, 2004

Hepatitis C virus (HCV) protein translation is mediated by a cis-acting RNA, an internal ribosomal entry site (IRES), located in the 5′ nontranslated region of the viral RNA. To examine proteins bound to the IRES, which could include proteins important for its function as well as potential drug targets, we used shotgun peptide sequencing to identify proteins in quadruplicate protein affinity extracts of lysed Huh7 cells, obtained using a biotinylated IRES. Twenty-six proteins bound the HCV IRES but not a reversed complementary sequence RNA or vector RNA controls. These included five ribosomal subunits, nine eukaryotic initiation factor 3 subunits, and novel interacting proteins such as the cytoskeletal-related proteins actin, FHOS (formin homologue overexpressed in spleen) and MIP-T3 (microtubule interacting protein that associates with TRAF3). Other novel HCV IRES-binding proteins included UNR (upstream of N-ras), UNR-interacting protein, and the RNA-binding proteins PAI-1 (plasminogen activator inhibitor-1) mRNA binding protein and Ewing sarcoma breakpoint 1 region protein EWS. A large set of additional proteins bound both the HCV IRES and a reversed complementary IRES sequence control, including the known HCV interactors PTB (polypyrimidine tract binding protein), the La autoantigen, and nucleolin. The discovery of these novel HCV IRES-binding proteins suggests links between IRES biology and the cytoskeleton, signal transduction, and other cellular functions.

Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit

Nucleic Acids Research, 2006

Binding of the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA to the eIF-free 40S ribosomal subunit is the first step of initiation of translation of the viral RNA. Hairpins IIId and IIIe comprising 253-302 nt of the IRES are known to be essential for binding to the 40S subunit. Here we have examined the molecular environment of the HCV IRES in its binary complex with the human 40S ribosomal subunit. For this purpose, two RNA derivatives were used that bore a photoactivatable perfluorophenyl azide cross-linker. In one derivative the cross-linker was at the nucleotide A296 in hairpin IIIe, and in the other at G87 in domain II. Site-specific introduction of the cross-linker was performed using alkylating derivatives of oligodeoxyribonucleotides complementary to the target RNA sequences. No cross-links with the rRNA were detected with either RNA derivative. The RNA with the photoactivatable group at A296 cross-linked to proteins identified as S5 and S16 (major) and p40 and S3a (minor), while no cross-links with proteins were detected with RNA modified at G87. The results obtained indicate that hairpin IIIe is located on the solvent side of the 40S subunit head on a site opposite the beak.