IL-13Ralpha2 and IL-10 coordinately suppress airway inflammation, airway-hyperreactivity, and fibrosis in mice (original) (raw)
2007, The Journal of clinical investigation
Development of persistent Th2 responses in asthma and chronic helminth infections are a major health concern. IL-10 has been identified as a critical regulator of Th2 immunity, but mechanisms for controlling Th2 effector function remain unclear. IL-10 also has paradoxical effects on Th2-associated pathology, with IL-10 deficiency resulting in increased Th2-driven inflammation but also reduced airway hyperreactivity (AHR), mucus hypersecretion, and fibrosis. We demonstrate that increased IL-13 receptor alpha 2 (IL-13Ralpha2) expression is responsible for the reduced AHR, mucus production, and fibrosis in BALB/c IL-10(-/-) mice. Using models of allergic asthma and chronic helminth infection, we demonstrate that IL-10 and IL-13Ralpha2 coordinately suppress Th2-mediated inflammation and pathology, respectively. Although IL-10 was identified as the dominant antiinflammatory mediator, studies with double IL-10/IL-13Ralpha2-deficient mice illustrate an indispensable role for IL-13Ralpha2 i...
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Related papers
IL-13 receptor α2 contributes to development of experimental allergic asthma
Journal of Allergy and Clinical Immunology, 2013
Background-IL-13 receptor alpha2 (IL-13R 2) binds IL-13 with high affinity and modulates IL-13 responses. There are soluble and membrane forms of IL-13R 2 generated by alternative splicing in mice but humans express only the membrane form (memIL-13R 2). Objective-We determined the role of memIL-13R 2 in development of allergic inflammation in mouse models of asthma. Methods-IL-13R 2-deficient and memIL-13R 2 lung epithelium-specific transgenic mice were challenged with house dust mite (HDM). Airway hyperresponsiveness (AHR) and inflammation were assessed by airway pressure time index, bronchoalveolar lavage (BAL) cell counts and lung histology. The mucus production was determined by periodic acid-Schiff (PAS) staining of lung sections, western blot analysis of chloride channel calcium activated 3 (CLCA3) expression in lung homogenates, and ELISA of Muc5ac in BAL fluid (BALF). The expression of cytokines and chemokines was determined by RT-quantitative PCR. Results-In IL-13R 2-deficient mice, AHR and airway inflammation were attenuated compared to wild type mice following HDM challenge. Lung epithelium overexpression of memIL-13R 2 in the IL-13R 2-deficient mice reconstituted AHR and inflammation to levels similar to those observed in HDM-challenged wild type mice. Mucus production was attenuated in lungs from HDM-treated IL-13R 2-deficient mice while lung epithelium overexpression of memIL-13R 2 increased mucus production. Lung epithelium overexpression of memIL-13R 2 had no effect on
Endogenous IL11 Signaling Is Essential in Th2- and IL13Induced Inflammation and Mucus Production
2008
Health Care System, West Haven, Connecticut IL-11 and IL-11 receptor (R)a are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Ra, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Ra-null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVAsensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Ra. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13-overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung. These studies were funded by NIH Grants HL-56389 ( J.A.E.) and HL-084225 (C.G.L.), and by CSL Limited (Australia) ( J.A.E.).
IL9 leads to airway inflammation by inducing IL13 expression in airway epithelial cells
International Immunology, 2006
Constitutive expression of IL9 in the lungs of transgenic (Tg) mice resulted in an asthma-like phenotype consisting of lymphocytic and eosinophilic lung inflammation, mucus hypersecretion and mast cell hyperplasia. Several T h 2 cytokines including IL4, IL5 and IL13 were expressed in the lung in response to Tg IL9. IL13 was absolutely necessary for the development of lung pathology. To understand how IL9 induces IL13-dependent lung inflammation and mucus production, we sought the IL13-producing cells. Surprisingly, we found that the absence of T cells and B cells in recombinaseactivating gene 1 (RAG1)-deficient IL9 Tg mice enhanced lung inflammation and dramatically enhanced IL13 production. In addition, the lack of mast cells or eosinophils in IL9 Tg mice did not affect IL13 levels in the lung. In situ hybridization for IL13 on lung sections from RAG1À/À IL9 Tg mice revealed that airway epithelial cells were the major IL13-producing cell type. Our results implicate the lung epithelium as a potentially important source of inflammatory cytokines in asthma.
2005
Background: Growing evidence shows that interleukin 13 (IL-13) may play an essential role in the development of airway inflammation and bronchial hyper-responsiveness (BHR), two defining features of asthma. Although the underlying mechanisms remain unknown, a number of reports have shown that IL-13 may exert its deleterious effects in asthma by directly acting on airway resident cells, including epithelial cells and airway smooth muscle cells. In this report, we hypothesize that IL-13 may participate in the pathogenesis of asthma by activating a set of "proasthmatic" genes in airway smooth muscle (ASM) cells.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.