The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion (original) (raw)

Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey

BMC Genomics, 2012

Background: The scorpion Tityus stigmurus is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of Tityus stigmurus scorpion. Results: A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx-like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode "other possible venom molecules", which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%.

A non-lethal method for studying scorpion venom gland transcriptomes, with a review of potentially suitable taxa to which it can be applied

PLOS ONE, 2021

Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis...

Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones)

BMC Genomics, 2007

Background: Scorpions like other venomous animals posses a highly specialized organ that produces, secretes and disposes the venom components. In these animals, the last postabdominal segment, named telson, contains a pair of venomous glands connected to the stinger. The isolation of numerous scorpion toxins, along with cDNA-based gene cloning and, more recently, proteomic analyses have provided us with a large collection of venom components sequences. However, all of them are secreted, or at least are predicted to be secretable gene products. Therefore very little is known about the cellular processes that normally take place inside the glands for production of the venom mixture. To gain insights into the scorpion venom gland biology, we have decided to perform a transcriptomic analysis by constructing a cDNA library and conducting a random sequencing screening of the transcripts.

First Transcriptome Analysis of Iranian Scorpion, Mesobuthus Eupeus Venom Gland

Iranian Journal of Pharmaceutical Research : IJPR, 2018

Scorpions are generally an important source of bioactive components, including toxins and other small peptides as attractive molecules for new drug development. Mesobuthus eupeus, from medically important and widely distributed Buthidae family, is the most abundant species in Iran. Researchers are interesting on the gland of this scorpion due to the complexity of its venom. Here, we have analyzed the transcriptome based on expressed sequence tag (EST) database from the venom tissue of Iranian M. eupeus by constructing a cDNA library and subsequent Sanger sequencing of obtained inserts. Sixty-three unique transcripts were identified, which were grouped in different categories, including Toxins (44 transcripts), Cell Proteins (9 transcripts), Antimicrobial Peptides (4 transcripts) and Unknown Peptides (3 transcripts). The analysis of the ESTs revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new precursor provi...

Toxic peptides and genes encoding toxin gamma of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus

Biochemical Journal

Seven toxic peptides from the venom of Tityus bahiensis and Tityus stigmurus was isolated and sequenced, five of them to completion. The most abundant peptide from each of these two species of scorpion was 95% identical with that of toxin gamma from the venom of Tityus serrulatus. They were consequently named gamma-b and gamma-st respectively. The genes encoding these new gamma-like peptides were cloned and sequenced by utilizing oligonucleotides synthesized according to known cDNA sequences of toxin gamma, and amplified by PCR on templates of DNA purified from both T. bahiensis and T. stigmurus. They contain an intron of approx. 470 bp. Possible mechanisms of processing and expressing these peptides are discussed, in view of the fact that glycine is the first residue of the N-terminal sequence of T. stigmurus, whereas lysine is the residue at position 1 of toxin gamma from T. serrulatus and T. bahiensis. In addition, chemical characterization of the less abundant toxic peptides sho...

Toxic peptides and genes encoding toxin γ of the Brazilian scorpions Tityus bahiensis and Tityus stigmurus

Biochemical Journal, 1996

Seven toxic peptides from the venom of Tityus bahiensis and Tityus stigmurus were isolated and sequenced, five of them to completion. The most abundant peptide from each of these two species of scorpion was 95% identical with that of toxin γ from the venom of Tityus serrulatus. They were consequently named γ-b and γ-st respectively. The genes encoding these new γ-like peptides were cloned and sequenced by utilizing oligonucleotides synthesized according to known cDNA sequences of toxin γ, and amplified by PCR on templates of DNA purified from both T. bahiensis and T. stigmurus. They contain an intron of approx. 470 bp. Possible mechanisms of processing and expressing these peptides are discussed, in view of the fact that glycine is the first residue of the N-terminal sequence of T. stigmurus, whereas lysine is the residue at position 1 of toxin γ from T. serrulatus and T. bahiensis. In addition, chemical characterization of the less abundant toxic peptides showed the presence of at ...

De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides

Toxicon : official journal of the International Society on Toxinology, 2018

Scorpion, as an ancient species, has been widely used on dozens of human diseases in traditional Chinese Medicine. Although the scorpion venom from the Buthidae family with the potent toxicity attracts more interests, toxins from the non-Buthidae family draw great attention as well because of its abundance and complexity even without harm to mammals. Moreover, several toxic components of scorpion venom have been identified as valuable scaffolds for the drug design and development. Using the Next Generation Sequencing (NGS) technique, here we reported the transcriptome of the venomous glands of Heterometrus spinifer, a non-Buthidae scorpion that only a few toxic and complete components have been identified known-to-date. The total mRNA extracted from the venomous glands of H. spinifer was subjected to illumina sequencing with a strategy of de novo assembly, and a total of 54 189 transcripts were unigenes from a total of 88 311 600 determined reads. We annotated 18 567 (34.26%) unigen...

The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides

BMC Genomics, 2014

Background: Transcriptome approaches have revealed a diversity of venom compounds from a number of venomous species. Mesobuthus gibbosus scorpion showed a medical importance for the toxic effect of its sting. Previously, our group reported the first three transcripts that encode toxin genes in M. gibbosus. However, no additional toxin genes or venom components have been described for this species. Furthermore, only a very small number of reports on the genomic organization of toxin genes of scorpion species have been published. Up to this moment, no information on the gene characterization of M. gibbosus is available. Results: This study provides the first insight into gene expression in venom glands from M. gibbosus scorpion. A cDNA library was generated from the venom glands and subsequently analyzed (301 clones). Sequences from 177 high-quality ESTs were grouped as 48 Mgib sequences, of those 48 sequences, 40 (29 "singletons" and 11 "contigs") correspond with one or more ESTs. We identified putative precursor sequences and were grouped them in different categories (39 unique transcripts, one with alternative reading frames), resulting in the identification of 12 new toxin-like and 5 antimicrobial precursors (transcripts). The analysis of the gene families revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new KTx precursor provides evidence to validate a new KTx subfamily (α-KTx 27.x). A second part of this work involves the genomic organization of three Meg-chlorotoxin-like genes (ClTxs). Genomic DNA sequence reveals close similarities (presence of one same-phase intron) with the sole genomic organization of chlorotoxins ever reported (from M. martensii). Conclusions: Transcriptome analysis is a powerful strategy that provides complete information of the gene expression and molecular diversity of the venom glands (telson). In this work, we generated the first catalogue of the gene expression and genomic organization of toxins from M. gibbosus. Our result represents a relevant contribution to the knowledge of toxin transcripts and complementary information related with other cell function proteins and venom peptide transcripts. The genomic organization of the chlorotoxin genes may help to understand the diversity of this gene family.

Proteomic analysis ofTityus discrepans scorpion venom and amino acid sequence of novel toxins

PROTEOMICS, 2006

The Venezuelan scorpion Tityus discrepans is known to cause human fatalities. We describe the first complete proteomic analysis of its venom. By HPLC 58 different fractions were obtained and 205 different components were identified by MS analysis. Components having molecular masses from 272 to 57 908 amu were found. Forty homogeneous components had their N-terminal amino acid sequence determined by Edman degradation, from which two new peptides named TdK2 and TdK3 (meaning T. discrepans (Td) K 1 channel toxins 2 and 3) were fully characterized. The first contains 34 amino acid residues with a molecular mass of 3451 amu, and the second has 36 amino acids with 3832 amu. Both peptides are tightly bound by three disulfide bridges. TdK2 was shown to block reversibly the Shaker B K 1 -channel expressed heterologously in Sf9 cells. The systematic number assigned to TdK2 is a-KTx-18.2 and that of TdK3 is a-KTx-18.3. Comparative analysis of the amino acid sequences found suggests that this venom contains peptides highly similar to those that block K 1 channels, as well as those that modify the gating mechanisms of Na 1 channels, found in other scorpions. Additionally, peptides similar to defensins were also identified.

Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus

Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channelacting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.