Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions (original) (raw)
Genome-wide association studies in asthma: progress and pitfalls
Advances in Genomics and Genetics, 2015
Genetic studies of asthma have revealed that there is considerable heritability to the phenotype. An extensive history of candidate-gene studies has identified a long list of genes associated with immune function that are potentially involved in asthma pathogenesis. However, many of the results of candidate-gene studies have failed to be replicated, leaving in question the true impact of the implicated biological pathways on asthma. With the advent of genome-wide association studies, geneticists are able to examine the association of hundreds of thousands of genetic markers with a phenotype, allowing the hypothesis-free identification of variants associated with disease. Many such studies examining asthma or related phenotypes have been published, and several themes have begun to emerge regarding the biological pathways underpinning asthma. The results of many genome-wide association studies have currently not been replicated, and the large sample sizes required for this experimental strategy invoke difficulties with sample stratification and phenotypic heterogeneity. Recently, large collaborative groups of researchers have formed consortia focused on asthma, with the goals of sharing material and data and standardizing diagnosis and experimental methods. Additionally, research has begun to focus on genetic variants that affect the response to asthma medications and on the biology that generates the heterogeneity in the asthma phenotype. As this work progresses, it will move asthma patients closer to more specific, personalized medicine.
BMC Medical Genetics, 2013
Background Asthma genome-wide association studies (GWAS) have identified several asthma susceptibility genes with confidence; however the relative contribution of these genetic variants or single nucleotide polymorphisms (SNPs) to clinical endpoints (as opposed to disease diagnosis) remains largely unknown. Thus the aim of this study was to firstly bridge this gap in knowledge and secondly investigate whether these SNPs or those that are in linkage disequilibrium are likely to be functional candidates with respect to regulation of gene expression, using reported data from the ENCODE project. Methods Eleven of the key SNPs identified in eight loci from recent asthma GWAS were evaluated for association with asthma and clinical outcomes, including percent predicted FEV1, bronchial hyperresponsiveness (BHR) to methacholine, severity defined by British Thoracic Society steps and positive response to skin prick test, using the family based association test additive model in a well charact...
Genome-wide association studies in asthma; perhaps, the end of the beginning
Current Opinion in Allergy and Clinical Immunology, 2013
Purpose of review A large number of genetic loci contribute towards an individual's susceptibility to asthma and other complex diseases. Genome-wide association studies (GWASs) have provided us with a wealth of loci associated with asthma susceptibility, asthma endotypes and responsiveness to asthma medications. The reproducibility of these genetic loci across different studies highlights the interplay of general and population-specific risk alleles in asthma. Although GWASs have been successful in identifying disease-associated loci, there is still large potential for such studies to provide further insights into asthma pathogenesis.
Assessing the Reproducibility of Asthma Candidate Gene Associations, Using Genome-wide Data
American Journal of Respiratory and Critical Care Medicine, 2009
Rationale: Association studies have implicated many genes in asthma pathogenesis, with replicated associations between singlenucleotide polymorphisms (SNPs) and asthma reported for more than 30 genes. Genome-wide genotyping enables simultaneous evaluation of most of this variation, and facilitates more comprehensive analysis of other common genetic variation around these candidate genes for association with asthma. Objectives: To use available genome-wide genotypic data to assess the reproducibility of previously reported associations with asthma and to evaluate the contribution of additional common genetic variation surrounding these loci to asthma susceptibility. Methods: Illumina Human Hap 550Kv3 BeadChip (Illumina, San Diego, CA) SNP arrays were genotyped in 422 nuclear families participating in the Childhood Asthma Management Program. Genes with at least one SNP demonstrating prior association with asthma in two or more populations were tested for evidence of association with asthma, using family-based association testing. Measurements and Main Results: We identified 39 candidate genes from the literature, using prespecified criteria. Of the 160 SNPs previously genotyped in these 39 genes, 10 SNPs in 6 genes were significantly associated with asthma (including the first independent replication for asthma-associated integrin b 3 [ITGB3]). Evaluation of 619 additional common variants included in the Illumina 550K array revealed additional evidence of asthma association for 15 genes, although none were significant after adjustment for multiple comparisons. Conclusions: We replicated asthma associations for a minority of candidate genes. Pooling genome-wide association study results from multiple studies will increase the power to appreciate marginal effects of genes and further clarify which candidates are true ''asthma genes.''
BioRxiv, 2017
BACKGROUND: Asthma is a complex disease with striking disparities across racial and ethnic groups, which may be partly attributable to genetic factors. One of the main goals of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to discover genes conferring risk to asthma in populations of African descent. METHODS: We performed a genome-wide meta-analysis of asthma across 11 CAAPA datasets (4,827 asthma cases and 5,397 controls), genotyped on the African Diaspora Power Chip (ADPC) and including existing GWAS array data. The genotype data were imputed up to a whole genome sequence reference panel from n=880 African ancestry individuals for a total of 61,904,576 SNPs. Statistical models appropriate to each study design were used to test for association, and results were combined using the weighted Z-score method. We also used admixture mapping as a complementary approach to identify loci involved in asthma pathogenesis in subjects of African ancestry. RESULTS: SNPs rs787160 and rs17834780 on chromosome 2q22·3 were significantly associated with asthma (p=6 ·57×10−9 and 2·97 × 10−8 respectively). These SNPs lie in the intergenic region between the Rho GTPase Activating Protein 15 (ARHGAP15) and Glycosyltransferase Like Domain Containing 1 (GTDC1) genes. Four low frequency variants on chromosome 1q21.3, which may be involved in the "atopic march" and which are not polymorphic in Europeans, also showed evidence for association with asthma (1·18 × 10−6 ≤p≤3·06 ×10 −6). SNP rs11264909 on chromosome 1q23·1, close to a region previously identified by the EVE asthma meta-analysis as having a putative African ancestry specific effect, only showed differences in counts in subjects homozygous for alleles of African ancestry. Admixture mapping also identified a significantly associated region on chromosome 6q23·2, which includes the Transcription Factor 21 (TCF21) gene, previously shown to be differentially expressed in bronchial tissues of asthmatics and non-asthmatics. CONCLUSIONS: We have identified a number of novel asthma association signals warranting further investigation.
Genome-wide association study of Korean asthmatics: a comparison with UK asthmatics
2020
Purpose: Although genome-wide association studies (GWASs) represent the most powerful approach for identifying genes that influence asthma, to date, no studies have established genetic susceptibility to asthma in the Korean population. This study aimed to identify genetic variants associated with adult Korean asthmatics and compare them with the significant single nucleotide polymorphisms (SNPs) of UK asthmatics from the UK Biobank. Methods: Patients were defined as having asthma if they were diagnosed by a doctor or taking medications for asthma. Controls were defined as individuals without asthma or chronic obstructive pulmonary disease. We performed quality control, genotype imputation, GWAS, and PrediXcan analyses. In the GWAS, a P value of < 5 × 10 −8 was considered significant. We compared significant SNPs between Korean and UK patients with asthma. Results: A total of 1,386 asthmatic patients and 5,205 controls were analyzed. The SNP rs1770, located near the human leukocyte antigen (HLA)-DQB1, was the most significant SNP (P = 4.5 × 10 −10). In comparison with 24 SNPs in a GWAS of UK asthmatics, six SNPs were significant with the same odds ratio (OR) direction, including signals related to type 2 inflammation (e.g., IL1RL1, TSLP, and GATA3) and mucus plugging (e.g., MUC5AC). HLA-DQA1 showed an opposite OR direction. The HLA-DQB1 gene demonstrated significantly imputed mRNA expression in the lung tissue and whole blood. Conclusions: The SNP rs1770 of HLA-DQB1 was the most significant in Korean asthmatics. Similarities and discrepancies were found in the genetic variants between Korean and UK asthmatics. GWAS of Korean asthmatics should be replicated and compared with those of GWAS of other ethnicities.
Meta-analysis of 20 genome-wide linkage studies evidenced new regions linked to asthma and atopy
European Journal of Human Genetics, 2010
Asthma is caused by a heterogeneous combination of environmental and genetic factors. In the context of GA2LEN (Global Allergy and Asthma European Network), we carried out meta-analyses of almost all genome-wide linkage screens conducted to date in 20 independent populations from different ethnic origins (Z3024 families with Z10 027 subjects) for asthma, atopic asthma, bronchial hyper-responsiveness and five atopy-related traits (total immunoglobulin E level, positive skin test response (SPT) to at least one allergen or to House Dust Mite, quantitative score of SPT (SPTQ) and eosinophils (EOS)). We used the genome scan meta-analysis method to assess evidence for linkage within bins of traditionally 30-cM width, and explored the manner in which these results were affected by bin definition. Meta-analyses were conducted in all studies and repeated in families of European ancestry. Genome-wide evidence for linkage was detected for asthma in two regions (2p21-p14 and 6p21) in European families ascertained through two asthmatic sibs. With regard to atopy phenotypes, four regions reached genome-wide significance: 3p25.3-q24 in all families for SPT and three other regions in European families (2q32-q34 for EOS, 5q23-q33 for SPTQ and 17q12-q24 for SPT). Tests of heterogeneity showed consistent evidence of linkage of SPTQ to 3p11-3q21, whereas between-study heterogeneity was detected for asthma in 2p22-p13 and 6p21, and for atopic asthma in 1q23-q25. This large-scale meta-analysis provides an important resource of information that can be used to prioritize further fine-mapping studies and also be integrated with genome-wide association studies to increase power and better interpret the outcomes of these studies.
The American Journal of Human Genetics, 2005
Asthma affects nearly 14 million people worldwide and has been steadily increasing in frequency for the past 50 years. Although environmental factors clearly influence the onset, progression, and severity of this disease, family and twin studies indicate that genetic variation also influences susceptibility. Linkage of asthma and related phenotypes to chromosome 6p21 has been reported in seven genome screens, making it the most replicated region of the genome. However, because many genes with individually small effects are likely to contribute to risk, identification of asthma susceptibility loci has been challenging. In this study, we present evidence from four independent samples in support of HLA-G as a novel asthma and bronchial hyperresponsiveness susceptibility gene in the human leukocyte antigen region on chromosome 6p21, and we speculate that this gene might contribute to risk for other inflammatory diseases that show linkage to this region.