Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions (original) (raw)
Related papers
Journal of Chromatography B, 2009
Multidimensional liquid-based separation techniques are described for maximizing the resolution of the enormous number of peptides generated upon tryptic digestion of proteomes, and hence, reduce the spatial and temporal complexity of the sample to a level that allows successful mass spectrometric analysis. This review complements the previous contribution on unidimensional high performance liquid chromatography (HPLC). Both chromatography and electrophoresis will be discussed albeit with reversed-phase HPLC (RPLC) as the final separation dimension prior to MS analysis.
…, 2010
The 2-D peptide separations employing mixed mode reversed phase anion exchange (MM (RP-AX)) HPLC in the first dimension in conjunction with RP chromatography in the second dimension were developed and utilised for shotgun proteome analysis. Compared with strong cation exchange (SCX) typically employed for shotgun proteomic analysis, peptide separations using MM (RP-AX) revealed improved separation efficiency and increased peptide distribution across the elution gradient. In addition, improved sample handling, with no significant reduction in the orthogonality of the peptide separations was observed. The shotgun proteomic analysis of a mammalian nuclear cell lysate revealed additional proteome coverage (2818 versus 1125 unique peptides and 602 versus 238 proteins) using the MM (RP-AX) compared with the traditional SCX hyphenated to RP-LC-MS/MS. The MM analysis resulted in approximately 90% of the unique peptides identified present in only one fraction, with a heterogeneous peptide distribution across all fractions. No clustering of the predominant peptide charge states was observed during the gradient elution. The application of MM (RP-AX) for 2-D LC proteomic studies was also extended in the analysis of iTRAQ-labelled HeLa and cyanobacterial proteomes using nano-flow chromatography interfaced to the MS/MS. We demonstrate MM (RP-AX) HPLC as an alternative approach for shotgun proteomic studies that offers significant advantages over traditional SCX peptide separations.
Multi-dimensional liquid chromatography in proteomics—A review
Analytica Chimica Acta, 2010
Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. This still-emerging combination of technologies aims to describe and characterize all expressed proteins in a biological system. Because of upper limits on mass detection of mass spectrometers, proteins are usually digested into peptides and the peptides are then separated, identified and quantified from this complex enzymatic digest. The problem in digesting proteins first and then analyzing the peptide cleavage fragments by mass spectrometry is that huge numbers of peptides are generated that overwhelm direct mass spectral analyses. The objective in the liquid chromatography approach to proteomics is to fractionate peptide mixtures to enable and maximize identification and quantification of the component peptides by mass spectrometry. This review will focus on existing multidimensional liquid chromatographic (MDLC) platforms developed for proteomics and their application in combination with other techniques such as stable isotope labeling. We also provide some perspectives on likely future developments.
Journal of Analytical Chemistry, 2017
⎯High-performance liquid chromatography (HPLC) is widely used for separation of complex peptide mixtures before mass spectrometry-based proteome analysis. In this analysis, reversed phase HPLC (RP-HPLC) using non-polar stationary phases such as surface-modified silica containing alkyl groups (e.g., C18) is typically employed. Because of the high heterogeneity of proteomic samples, multidimensional separation approaches gained increasing attention recently to tackle this complexity and extremely high range of concentrations. In two-dimensional liquid chromatography, hydrophilic interaction chromatography (HILIC) is often a method of choice for combination with RP-HPLC because it uses reversed-phase type eluents and allows efficient separation of polar peptides. Due to the high degree of orthogonality in this two-dimensional separation space, it is tempting to develop approaches for predicting peptide retention times for HILIC-based separations similar to the ones for RP-HPLC. Recent successful efforts in this area were focused on developing retention coefficient (RC)-based approaches. Herein, we explored the feasibility of using a statistical thermodynamic model for prediction of peptide retention times in HILIC separations and determined the phenomenological parameters of the model for a bare silica column. The performance of the developed model was tested using HPLC-MS analysis of a set of synthetic peptides, as well as a tryptic peptide mixture.
High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis
2012
Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fold) and proteins (1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of high pH RPLC with fraction concatenation include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive alternative to SCX chromatography in conjunction with the second dimension low pH RPLC for two-dimensional proteomics analyses.
Journal of Chromatography A, 2005
This article describes a new complementary peptide separation and purification concept that makes use of a novel mixed-mode reversedphase/weak anion-exchange (RP/WAX) type stationary phase. The RP/WAX is based on N-(10-undecenoyl)-3-aminoquinuclidine selector, which is covalently immobilized on thiol-modified silica particles (5 m, 100Å pore diameter) by radical addition reaction. Remaining thiol groups are capped by radical addition with 1-hexene. This newly developed separation material contains two distinct binding domains in a single chromatographic interactive ligand: a lipophilic alkyl chain for hydrophobic interactions with lipophilic moieties of the solute, such as in the reversed-phase chromatography, and a cationic site for anion-exchange chromatography with oppositely charged solutes, which also enables repulsive ionic interactions with positively charged functional groups, leading to ion-exclusion phenomena. The beneficial effect that may result from the combination of the two chromatographic modes is exemplified by the application of this new separation material for the chromatographic separation of the N-and C-terminally protected tetrapeptide N-acetyl-Ile-Glu-Gly-Arg-p-nitroanilide from its side products. Mobile phase variables have been thoroughly investigated to optimize the separation and to get a deeper insight into the retention and separation mechanism, which turned out to be more complex than any of the individual chromatography modes alone. A significant anion-exchange retention contribution at optimal pH of 4.5 was found only for acetate but not for formate as counter-ion. In loadability studies using acetate, peptide masses up to 200 mg could be injected onto an analytical 250 mm × 4 mm i.d. RP/WAX column (5 m) still without touching bands of major impurity and target peptide peaks. The corresponding loadability tests with formate allowed the injection of only 25% of this amount. The analysis of the purified peptide by capillary high-performance liquid chromatography (HPLC)-UV and HPLC-ESI-MS employing RP-18 columns revealed that the known major impurities have all been removed by a single chromatographic step employing the RP/WAX stationary phase. The better selectivity and enhanced sample loading capacity in comparison to RP-HPLC resulted in an improved productivity of the new purification protocol. For example, the yield of pure peptide per chromatographic run on RP/WAX phase was by a factor of about 15 higher compared to the standard gradient elution RP-purification protocol.
Anal Chem, 2003
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-μm channels) for implementing the on-line coupling of capillary LC columns operated at 10 000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of ∼1000 for capillaries having inner diameters between 15 and 150 μm. The on-line coupled SPE columns increased the sample processing capacity by ∼400-fold for sample solution volume and ∼10-fold for sample mass. The proteomic applications of this on-line SPEcapillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated ∼98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.
Analytical Chemistry, 2003
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-μm channels) for implementing the on-line coupling of capillary LC columns operated at 10 000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of ∼1000 for capillaries having inner diameters between 15 and 150 μm. The on-line coupled SPE columns increased the sample processing capacity by ∼400-fold for sample solution volume and ∼10-fold for sample mass. The proteomic applications of this on-line SPEcapillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated ∼98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.
Analytical Chemistry, 2005
A novel integrated multidimensional liquid chromatography (IMDL) method is demonstrated for the separation of peptide mixtures by two-dimensional HPLC coupled with ion trap mass spectrometry. The method uses an integrated column, containing both strong cation exchange and reversed-phase sections for two-dimensional liquid chromatography. The peptide mixture was fractionated by a pH step using a series of pH buffers, followed by reversed-phase chromatography. Since no salt was used during separation, the integrated multidimensional liquid chromatography can be directly connected to mass spectrometry for peptide analysis. The pH buffers were injected from an autosampler, and the entire process can be carried out on a one-dimensional liquid chromatography system. In a single analysis, the IMDL system, coupled with linear ion trap mass spectrometry, identified more than 2000 proteins in mouse liver. The peptides were eluted according to their pI distribution. The resolution of the pH fractionation is ∼0.5 pH unit. The method has low overlapping across pH fractions, good resolution of peptide mixture, and good correlation of peptide pIs with pH steps. This method provides a technique for largescale protein identification using existing one-dimensional HPLC systems.