Improved MEG/EEG source localization with reweighted mixed-norms (original) (raw)

Profile image of Alexandre GramfortAlexandre Gramfort

2014, 2014 International Workshop on Pattern Recognition in Neuroimaging

The iterative reweighted Mixed-Norm Estimate for spatio-temporal MEG/EEG source reconstruction

Alexandre Gramfort

View PDFchevron_right

Lp Norm Iterative Sparse Solution for EEG Source Localization

Dezhong Yao

IEEE Transactions on Biomedical Engineering, 2000

View PDFchevron_right

Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods

Alexandre Gramfort

Physics in Medicine and Biology, 2012

View PDFchevron_right

Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations

Alexandre Gramfort

NeuroImage, 2013

View PDFchevron_right

Improving M/EEG source localizationwith an inter-condition sparse prior

Alexandre Gramfort

2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009

View PDFchevron_right

A two-way regularization method for MEG source reconstruction

Haipeng Shen

The Annals of Applied Statistics, 2012

View PDFchevron_right

Solving the EEG Inverse Problem based on Space-Time-Frequency Structured Sparsity Constraints

Johannes Höhne

NeuroImage, 2015

View PDFchevron_right

Large-scale EEG/MEG source localization with spatial flexibility

Stefan Haufe, Thorsten Dickhaus

NeuroImage, 2011

View PDFchevron_right

Spatially sparse source cluster modeling by compressive neuromagnetic tomography

Fa-hsuan Lin

NeuroImage, 2010

View PDFchevron_right

Penalized least squares methods for solving the EEG inverse problem

Mayrim Vega, Jose Bornot

Statistica Sinica, 2008

View PDFchevron_right

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

Multi-subject MEG/EEG source imaging with sparse multi-task regression

Bertrand Thirion

NeuroImage, 2020

View PDFchevron_right

Penalized least squares and sign constraints with modified Newton-Raphson algorithms: application to EEG source imaging

Jhoanna Perez

arXiv: Applications, 2019

View PDFchevron_right

Sparse EEG/MEG source estimation via a group lasso

Anthony Norcia

PloS one, 2017

View PDFchevron_right

Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task Lasso

Bertrand Thirion

ArXiv, 2020

View PDFchevron_right

EEG source localization using a sparsity prior based on Brodmann areas

Rajib Rana (rajibrana.org), S. Saha, Frank De Hoog

2014

View PDFchevron_right

Solving large-scale MEG/EEG source localization and functional connectivity problems simultaneously using state-space models

Jose Bornot

arXiv (Cornell University), 2022

View PDFchevron_right

Spatio-temporal Regularization in Linear Distributed Source Reconstruction from EEG/MEG: A Critical Evaluation

Thomas Knösche, Moritz Dannhauer, Carsten Wolters

Brain Topography, 2013

View PDFchevron_right

Sparse wavelet-based solutions for the M/EEG inverse problem

Bruno Torresani

arXiv (Cornell University), 2023

View PDFchevron_right

Task-Related EEG Source Localization via Graph Regularized Low-Rank Representation Model

Jay Rosenberger

2018

View PDFchevron_right

Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates

Fa-hsuan Lin

NeuroImage, 2006

View PDFchevron_right

Sparse EEG Source Localization using Bernoulli Laplacian Priors

Lotfi Chaari

IEEE Transactions on Biomedical Engineering, 2015

View PDFchevron_right

Sparse current source estimation for MEG using loose orientation constraints

Fa-hsuan Lin

View PDFchevron_right

Combining sparsity and rotational invariance in EEG/MEG source reconstruction

Klaus-robert Müller

NeuroImage, 2008

View PDFchevron_right

Multiple sparse priors for the M/EEG inverse problem

Jérémie Mattout

Neuroimage, 2008

View PDFchevron_right

Sparse Algorithms for EEG Source Localization

Teja Mannepalli

Medical & Biological Engineering & Computing, Springer, 2021

View PDFchevron_right

Multivariate source prelocalization (MSP): Use of functionally informed basis functions for better conditioning the MEG inverse problem

Jérémie Mattout

Neuroimage, 2005

View PDFchevron_right

Iterative MethodsTemporal ResolutionNeurophysiologyInverse ProblemsBrain ActivitySpatial resolution