Infrared Radiative Properties of the Antarctic Plateau from AVHRR Data. Part I: Effect of the Snow Surface (original) (raw)

Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet

The Cryosphere Discussions, 2015

The albedo of a snowpack depends on the single-scattering properties of individual snow crystals, which have a variety of shapes and sizes, and are often bounded in clusters. From the point of view of optical modelling, it is essential to identify the geometric dimensions of the population of snow particles that synthetize the scattering properties of the snowpack surface. This involves challenges related to the complexity of modelling the radiative transfer in such an irregular medium, and to the difficulty of measuring microphysical snow properties. In this paper, we illustrate a method to measure the size distribution of a snow particle parameter, which roughly corresponds to the smallest snow particle dimension, from two-dimensional macro-photos of snow particles taken in Antarctica at the surface layer of a melting ice sheet. We demonstrate that this snow particle metric corresponds well to the optically equivalent effective radius utilized in radiative transfer modelling, in p...

Measurements and Modeling of Optical-Equivalent Snow Grain Sizes under Arctic Low-Sun Conditions

Remote. Sens., 2021

The size and shape of snow grains directly impacts the reflection by a snowpack. In this article, different approaches to retrieve the optical-equivalent snow grain size (ropt) or, alternatively, the specific surface area (SSA) using satellite, airborne, and ground-based observations are compared and used to evaluate ICON-ART (ICOsahedral Nonhydrostatic—Aerosols and Reactive Trace gases) simulations. The retrieval methods are based on optical measurements and rely on the ropt-dependent absorption of solar radiation in snow. The measurement data were taken during a three-week campaign that was conducted in the North of Greenland in March/April 2018, such that the retrieval methods and radiation measurements are affected by enhanced uncertainties under these low-Sun conditions. An adjusted airborne retrieval method is applied which uses the albedo at 1700 nm wavelength and combines an atmospheric and snow radiative transfer model to account for the direct-to-global fraction of the sol...

In situ sampled snow particle sizes of the East Antarctic ice sheet and their relation to physical and remotely sensed snow surface parameters

Annals of Glaciology, 2013

Knowledge of snow properties across Antarctica is important in estimating how climate could potentially influence the mass balance of the Antarctic ice sheet. However, measuring these variables has proven to be challenging because appropriate techniques have not yet been developed and extensive datasets of field estimates are lacking. The goal of this study was to estimate the relationship between field-observed snow particle-size parameters from across the East Antarctic ice sheet and a suite of spatial datasets (i.e. topography, remote-sensing data) using a principal component analysis (PCA). Five snow particle-size parameters were correlated to spatial datasets of the following five groups: (1) relief properties such as elevation and slope; (2) remote-sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and synthetic aperture radar (SAR) sensors; (3) spatially interpolated data (i.e. 10 m maps of temperature and approximate snow accumulation in kgm−2 ä−1); (4) ...