A Derivative-Free Algorithm for Linearly Constrained Finite Minimax Problems (original) (raw)

Abstract

In this paper we propose a new derivative-free algorithm for linearly constrained finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivative- free algorithms can locate only points which satisfy weak necessary optimality conditions. In this work we define a new derivative-free algorithm which is globally convergent toward standard stationary points of the finite minimax problem.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (20)

  1. J. W. Bandler and C. Charalambous, Practical least pth optimization of networks, IEEE Trans. Microwave Theory Tech., 20 (1972), pp. 834-840.
  2. J. W. Bandler and C. Charalambous, Nonlinear minimax optimization as a sequence of least pth optimization with finite values of p, Internat. J. Systems Sci., 7 (1976), pp. 377- 391.
  3. D. P. Bertsekas, Constrained Optimization and Lagrange Multipliers Methods, Academic Press, New York, 1982.
  4. C. Charalambous, Acceleration of the least pth algorithm for minimax optimization with engineering applications, Math. Programming, 17 (1979), pp. 270-297.
  5. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
  6. G. Di Pillo, L. Grippo, and S. Lucidi, A smooth method for the finite minimax problem, Math. Programming, 60 (1993), pp. 187-214.
  7. C. GĂ­gola and S. Gomez, A regularization method for solving the finite convex min-max problem, SIAM J. Numer. Anal., 27 (1990), pp. 1621-1634.
  8. T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385-482.
  9. T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity Results for Generating Set Search for Linearly Constrained Optimization, Tech. report SAND2003-8550, Sandia National Laboratories, Livermore, CA, 2003, SIAM J. Optim., submitted.
  10. R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization, SIAM J. Optim., 10 (2000), pp. 917-941.
  11. X. Li, An entropy-based aggregate method for minimax optimization, Eng. Optim., 18 (1992), pp. 277-285.
  12. S. Lucidi and M. Sciandrone, On the global convergence of derivative-free methods for un- constrained optimization, SIAM J. Optim., 13 (2002), pp. 97-116.
  13. S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained optimization, Math. Program., 92 (2002), pp. 37-59.
  14. L. Luksan and J. Vlcek, Test Problems for Nonsmooth Unconstrained and Linearly Con- strained Optimization, Tech. report 798, Institute of Computer Science, Academy of Sci- ences of the Czech Republic, Prague, Czech Republic, 2000.
  15. D. Q. Mayne and E. Polak, Nondifferentiable optimization via adaptive smoothing, J. Optim. Theory Appl., 43 (1984), pp. 601-614.
  16. E. Polak, J. O. Royset, and R. S. Womersley, Algorithms with adaptive smoothing for finite minimax problems, J. Optim. Theory Appl., 119 (2003), pp. 459-484.
  17. R. A. Polyak, Smooth optimization methods for minimax problems, SIAM J. Control Optim., 26 (1988), pp. 1274-1286.
  18. F. Guerra Vazquez, H. Gunzel, and H. T. Jongen, On logarithmic smoothing of the maxi- mum function, Ann. Oper. Res., 101 (2001), pp. 209-220.
  19. S. Xu, Smoothing method for minimax problems, Comput. Optim. Appl., 20 (2001), pp. 267- 279.
  20. I. Zang, A smoothing technique for min-max optimization, Math. Programming, 19 (1980), pp. 61-77.