Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species (original) (raw)

Relaxed selection is a precursor to the evolution of phenotypic plasticity

Proceedings of the …, 2011

Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on proteincoding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity. eusociality | protein evolution | social insect | sexual dimorphism | sex-biased gene expression

Speciation genetics: current status and evolving approaches

Philosophical Transactions of The Royal Society B: Biological Sciences, 2010

The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.

Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers

Virology Journal, 2011

Background Planthoppers not only severely affect crops by causing mechanical damage when feeding but are also vectors of several plant virus species. The analysis of gene expression in persistently infected planthoppers might unveil the molecular basis of viral transmission. Quantitative real-time RT-PCR (RT-qPCR) is currently the most accurate and sensitive method used for quantitative gene expression analysis. In order to normalize the resulting quantitative data, reference genes with constant expression during the experimental procedures are needed. Results Partial sequences of the commonly used reference genes actin (ACT), α1-tubulin (TUB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), elongation factor 1 alpha (EF1A), ribosomal protein S18 (RPS18) and polyubiquitin C (UBI) from Delphacodes kuscheli, a planthopper capable of persistently transmitting the plant fijivirus Mal de Río Cuarto virus (MRCV), were isolated for the first time. Specific RT-qPCR primers were designed and the expression stability of these genes was assayed in MRCV-infective and naïve planthoppers using geNorm, Normfinder and BestKeeper tools. The overall analysis showed that UBI, followed by 18S and ACT, are the most suitable genes as internal controls for quantitative gene expression studies in MRCV-infective planthoppers, while TUB and EF1A are the most variable ones. Moreover, EF1A was upregulated by MRCV infection. Conclusions A RT-qPCR platform for gene expression analysis in the MRCV-infected planthopper vector Delphacodes kuscheli was developed. Our work is the first report on reference gene selection in virus-infected insects, and might serve as a precedent for future gene expression studies on MRCV and other virus-planthopper pathosystems.

The genetic basis of interspecies host preference differences in the model parasitoid Nasonia

Heredity, 2010

The genetic basis of host preference has been investigated in only a few species. It is relevant to important questions in evolutionary biology, including sympatric speciation, generalist versus specialist adaptation, and parasite-host co-evolution. Here we show that a major locus strongly influences host preference in Nasonia. Nasonia are parasitic wasps that utilize fly pupae; N. vitripennis is a generalist that parasitizes a diverse set of hosts whereas N. giraulti specializes on Protocalliphora (bird blowflies). In laboratory choice experiments using Protocalliphora and Sarcophaga (flesh flies), N. vitripennis shows a preference for Sarcophaga while N. giraulti shows a preference for Protocalliphora. Through a series of interspecies crosses we have introgressed a major locus affecting host preference from N. giraulti into N. vitripennis. The N. giraulti allele is dominant and greatly increases preference for Protocalliphora pupae in the introgression line relative to the recessive N. vitripennis allele. Through the utilization of a Nasonia genotyping microarray, we have identified the introgressed region as 16 megabases of chromosome 4, although a more complete analysis is necessary to determine the exact genetic architecture of host preference in the genus. To our knowledge, this is the first introgression of the host preference of one parasitoid species into another, as well as one of the few cases of introgression of a behavioral gene between species.

The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

BMC Genomics, 2010

Background: Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results: About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein.

A Gross Anatomy Ontology for Hymenoptera

PLOS One, 2010

Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information-millions of statements about hymenopteran phenotypesremains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO.

Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis

Chronobiology International, 2014

Photoperiodism, the ability to respond to seasonal varying day length with suitable life history changes, is a common trait in organisms that live in temperate regions. In most studied organisms, the circadian system appears to be the basis for photoperiodic time measurement. In insects this is still controversial: while some data indicate that the circadian system is causally involved in photoperiodism, others suggest that it may have a marginal or indirect role. Resonance experiments in the parasitic wasp Nasonia vitripennis have revealed a circadian component in photoperiodic time measurement compatible with a mechanism of internal coincidence where a two components oscillator system obtains information from dawn and dusk, respectively. The identity of this oscillator (or oscillators) is still unclear but possible candidates are the oscillating molecules of the auto-regulatory feedback loops in the heart of the circadian system. Here, we show for the first time the circadian oscillation of period and cryptochrome mRNAs in the heads of Nasonia females kept under short and long photoperiods. Period and cryptochrome mRNA levels display a synchronous oscillation in all conditions tested and persist, albeit with reduced amplitude, during the first day in constant light as well as constant darkness. More importantly, the signal for the period and cryptochrome oscillations is set by the light-on signal. These results, together with phylogenetic analyses, indicate that Nasonia's period and cryptochrome display characteristics of homologous genes in other hymenopteran species.

Circadian Rhythms Differ between Sexes and Closely Related Species of Nasonia Wasps

PLoS ONE, 2013

Activity rhythms in 24 h light-dark cycles, constant darkness, and constant light conditions were analyzed in four different Nasonia species for each sex separately. Besides similarities, clear differences are evident among and within Nasonia species as well as between sexes. In all species, activity in a light-dark cycle is concentrated in the photophase, typical for diurnal organisms. Contrary to most diurnal insect species so far studied, Nasonia follows Aschoff's rule by displaying long (.24 h) internal rhythms in constant darkness but short (,24 h) in constant light. In constant light, N. vitripennis males display robust circadian activity rhythms, whereas females are usually arrhythmic. In contrast to other Nasonia species, N. longicornis males display anticipatory activity, i.e. activity shortly before light-on in a light-dark cycle. As expected, N. oneida shows activity patterns similar to those of N. giraulti but with important differences in key circadian parameters. Differences in circadian activity patterns and parameters between species may reflect synchronization of specific life-history traits to environmental conditions. Scheduling mating or dispersion to a specific time of the day could be a strategy to avoid interspecific hybridization in Nasonia species that live in sympatry.

A genomic comparison of two termites with different social complexity

Frontiers in genetics, 2015

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothes...

Genomics of Environmentally Induced Phenotypes in 2 Extremely Plastic Arthropods

Journal of Heredity, 2011

Understanding how genes and the environment interact to shape phenotypes is of fundamental importance for resolving important issues in adaptive evolution. Yet, for most model species with mature genetics and accessible genomic resources, we know little about the natural environmental factors that shape their evolution. By contrast, animal species with deeply understood ecologies and well characterized responses to environmental cues are rarely subjects of genomic investigations. Here, we preview advances in genomics in aphids and waterfleas that may help transform research on the regulatory mechanisms of phenotypic plasticity. This insect and crustacean duo has the capacity to produce extremely divergent phenotypes in response to environmental stimuli. Sexual fate and reproductive mode are condition-dependent in both groups, which are also capable of altering morphology, physiology and behavior in response to biotic and abiotic cues. Recently, the genome sequences for the pea aphid Acyrthosiphon pisum and the waterflea Daphnia pulex were described by their respective research communities. We propose that an integrative study of genome biology focused on the conditiondependent transcriptional basis of their shared plastic traits and specialized mode of reproduction will provide broad insight into adaptive plasticity and genome by environment interactions. We highlight recent advances in understanding the genome regulation of alternative phenotypes and environmental cue processing, and we propose future research avenues to discover gene networks and epigenetic mechanisms underlying phenotypic plasticity.

Comparative Genomics of the Anopheline Glutathione S-Transferase Epsilon Cluster

PLoS ONE, 2011

Enzymes of the glutathione S-transferase (GST) family play critical roles in detoxification of xenobiotics across many taxa. While GSTs are ubiquitous both in animals and plants, the GST epsilon class (GSTE) is insect-specific and has been associated with resistance to chemical insecticides. While both Aedes aegypti and Anopheles gambiae GSTE clusters consist of eight members, only four putative orthologs are identifiable between the species, suggesting independent expansions of the class in each lineage. We used a primer walking approach, sequencing almost the entire cluster from three Anopheles species (An. stephensi, An. funestus (both Cellia subgenus) and An. plumbeus (Anopheles subgenus)) and compared the sequences to putative orthologs in An. gambiae (Cellia) in an attempt to trace the evolution of the cluster within the subfamily Anophelinae. Furthermore, we measured transcript levels from the identified GSTE loci by real time reverse transcription PCR to determine if all genes were similarly transcribed at different life stages. Among the species investigated, gene order and orientation were similar with three exceptions: (i) GSTE1 was absent in An. plumbeus; (ii) GSTE2 is duplicated in An. plumbeus and (iii) an additional transcriptionally active pseudogene (yAsGSTE2) was found in An. stephensi. Further statistical analysis and protein modelling gave evidence for positive selection on codons of the catalytic site in GSTE5 albeit its origin seems to predate the introduction of chemical insecticides. Gene expression profiles revealed differences in expression pattern among genes at different life stages. With the exception of GSTE1, yAsGSTE2 and GSTE2b, all Anopheles species studied share orthologs and hence we assume that GSTE expansion generally predates radiation into subgenera, though the presence of GSTE1 may also suggest a recent duplication event in the Old World Cellia subgenus, instead of a secondary loss. The modifications of the catalytic site within GSTE5 may represent adaptations to new habitats.

Characteristics of the genome of Arsenophonus nasoniae , son-killer bacterium of the wasp Nasonia

Insect Molecular Biology, 2010

We report the properties of a draft genome sequence of the bacterium Arsenophonus nasoniae, sonkiller bacterium of Nasonia vitripennis. The genome sequence data from this study are the first for a malekilling bacterium, and represent a microorganism that is unusual compared with other sequenced symbionts, in having routine vertical and horizontal transmission, two alternating hosts, and being culturable on cell-free media. The resulting sequence totals c. 3.5 Mbp and is annotated to contain 3332 predicted open reading frames (ORFs). Therefore, Arsenophonus represents a relatively large genome for an insect symbiont. The annotated ORF set suggests that the microbe is capable of a broad array of metabolic functions, well beyond those found for reproductive parasite genomes sequenced to date and more akin to horizontally transmitted and secondary symbionts. We also find evidence of genetic transfer from Wolbachia symbionts, and phage exchange with other gammaproteobacterial symbionts. These findings reflect the complex biology of a bacterium that is able to live, invade and survive multiple host environments while resisting immune responses.

Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

BMC Research Notes, 2011

Background: Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results: The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity.

Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes

eLife, 2014

Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila ...

A heterozygous moth genome provides insights into herbivory and detoxification

Nature Genetics, 2013

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants , but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood 2 . We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 8,07 protein-coding and ,42 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.

Insights into the Melipona scutellaris (Hymenoptera, Apidae, Meliponini) fat body transcriptome

Genetics and Molecular Biology, 2013

The insect fat body is a multifunctional organ analogous to the vertebrate liver. The fat body is involved in the metabolism of juvenile hormone, regulation of environmental stress, production of immunity regulator-like proteins in cells and protein storage. However, very little is known about the molecular mechanisms involved in fat body physiology in stingless bees. In this study, we analyzed the transcriptome of the fat body from the stingless bee Melipona scutellaris. In silico analysis of a set of cDNA library sequences yielded 1728 expressed sequence tags (ESTs) and 997 high-quality sequences that were assembled into 29 contigs and 117 singlets. The BLAST X tool showed that 86% of the ESTs shared similarity with Apis mellifera (honeybee) genes. The M. scutellaris fat body ESTs encoded proteins with roles in numerous physiological processes, including anti-oxidation, phosphorylation, metabolism, detoxification, transmembrane transport, intracellular transport, cell proliferation, protein hydrolysis and protein synthesis. This is the first report to describe a transcriptomic analysis of specific organs of M. scutellaris. Our findings provide new insights into the physiological role of the fat body in stingless bees.

Comparison of the transcriptional profiles of head and body lice

Insect Molecular Biology, 2012

The differences in the immune response between body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, were investigated initially by measuring the proliferation rates of two model bacteria, a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli, following challenge by injection. Body lice showed a significantly reduced immune response compared to head lice particularly to E. coli at the early stage of the immune challenge. Annotation of the body louse genome identified substantially fewer immune-related genes compared with other insects. Nevertheless, all required genetic components of the major immune pathways, except for the immune deficiency (Imd) pathway, are still retained in the body louse genome. Transcriptional profiling of representative genes involved in the humoral immune response, following bacterial challenge, revealed that both body and head lice, regardless of their developmental stages, exhibited an increased immune response to S. aureus but little to E. coli. Head lice, however, exhibited a significantly higher phagocytotic activity against E. coli than body lice, whereas the phagocytosis against S. aureus differed only slightly between body and head lice. These findings suggest that the greater immune response in head lice against E. coli is largely due to enhanced phagocytosis and not due to differences in the humoral immune response. The reduced phagocytotic activity in body lice could be responsible, in part, for their increased vector competence.

The Phylogenetic Origin of oskar Coincided with the Origin of Maternally Provisioned Germ Plasm and Pole Cells at the Base of the Holometabola

PLoS Genetics, 2011

The establishment of the germline is a critical, yet surprisingly evolutionarily labile, event in the development of sexually reproducing animals. In the fly Drosophila, germ cells acquire their fate early during development through the inheritance of the germ plasm, a specialized maternal cytoplasm localized at the posterior pole of the oocyte. The gene oskar (osk) is both necessary and sufficient for assembling this substance. Both maternal germ plasm and oskar are evolutionary novelties within the insects, as the germline is specified by zygotic induction in basally branching insects, and osk has until now only been detected in dipterans. In order to understand the origin of these evolutionary novelties, we used comparative genomics, parental RNAi, and gene expression analyses in multiple insect species. We have found that the origin of osk and its role in specifying the germline coincided with the innovation of maternal germ plasm and pole cells at the base of the holometabolous insects and that losses of osk are correlated with changes in germline determination strategies within the Holometabola. Our results indicate that the invention of the novel gene osk was a key innovation that allowed the transition from the ancestral late zygotic mode of germline induction to a maternally controlled establishment of the germline found in many holometabolous insect species. We propose that the ancestral role of osk was to connect an upstream network ancestrally involved in mRNA localization and translational control to a downstream regulatory network ancestrally involved in executing the germ cell program.

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

PLoS Genetics, 2011

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.

Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression

PloS one, 2015

Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete...

Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator

Science, 2010

The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.

Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment

Genome biology, 2014

Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. dome...

Transcriptome Pyrosequencing of the Parasitoid Wasp Cotesia vestalis: Genes Involved in the Antennal Odorant-Sensory System

PLoS ONE, 2012

Cotesia vestalis is an endoparasitic wasp that attacks larvae of the diamondback moth (Plutella xylostella), a herbivore of cruciferous plants. Females of C. vestalis use herbivore-induced plant odorants released from plants infested by P. xylostella as a host-searching cue. Transcriptome pyrosequencing was used to identify genes in the antennae of C. vestalis adult females coding for odorant receptors (ORs) and odorant binding proteins (OBPs) involved in insect olfactory perception. Quantitative gene expression analyses showed that a few OR and OBP genes were expressed exclusively in the antenna of C. vestalis adult females whereas most other classes of genes were expressed in the antennae of both males and females, indicating their diversity in importance for the olfactory sensory system. Together, transcriptome profiling of C. vestalis genes involved in the antennal odorant-sensory system helps in detecting genes involved in host-and food-search behaviors through infochemically-mediated interactions.

Transposon proliferation in an asexual parasitoid

Molecular Ecology, 2012

The widespread occurrence of sex is one of the most elusive problems in evolutionary biology. Theory predicts that asexual lineages can be driven to extinction by uncontrolled proliferation of vertically transmitted transposable elements (TEs), which accumulate because of the inefficiency of purifying selection in the absence of sex and recombination. To test this prediction, we compared genome-wide TE load between a sexual lineage of the parasitoid wasp Leptopilina clavipes and a lineage of the same species that is rendered asexual by Wolbachia-induced parthenogenesis. We obtained draft genome sequences at 15-20· coverage of both the sexual and the asexual lineages using nextgeneration sequencing. We identified transposons of most major classes in both lineages. Quantification of TE abundance using coverage depth showed that copy numbers in the asexual lineage exceeded those in the sexual lineage for DNA transposons, but not LTR and LINE-like elements. However, one or a small number of gypsy-like LTR elements exhibited a fourfold higher coverage in the asexual lineage. Quantitative PCR showed that high loads of this gypsy-like TE were characteristic for 11 genetically distinct asexual wasp lineages when compared to sexual lineages. We found no evidence for an overall increase in copy number for all TE types in asexuals as predicted by theory. Instead, we suggest that the expansions of specific TEs are best explained as side effects of (epi)genetic manipulations of the host genome by Wolbachia. Asexuality is achieved in a myriad of ways in nature, many of which could similarly result in TE proliferation.

Transfer of a chromosomal Maverick to endogenous bracovirus in a parasitoid wasp

Genetica, 2011

Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses. Lanzrein B, Drezen JM (2009a) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926-930 Bezier A, Herbiniere J, Lanzrein B, Drezen JM (2009b) Polydnavirus hidden face: the genes producing virus particles of parasitic wasps.

Identification of bracovirus particle proteins and analysis of their transcript levels at the stage of virion formation

Journal of General Virology, 2010

Polydnaviruses (PDVs) are unique symbiotic viruses associated with parasitic wasps; they replicate only in the calyx cells of a wasp's ovaries and are transferred at oviposition along with the parasitoid egg into the lepidopteran host. The DNA packaged in the viral particles encodes factors that manipulate the host's immune defences and development to benefit the parasitoid. PDVs are found in two subfamilies of ichneumonids (ichnoviruses) and in braconids of the microgastroid complex (bracoviruses). We recently showed that the latter derive from an ancestral nudivirus, as 24 nudivirus-related genes were identified in ovaries of two distantly related braconids at the stage of virion formation. Here, we present a comprehensive analysis of the viral particle proteins of the Chelonus inanitus bracovirus (CiBV). Proteins of purified CiBV particles were analysed by mass spectrometry and amino acid sequences matched to the existing ovarian-cDNA database. In addition, transcript quantities of identified genes were measured by quantitative real-time PCR in female pupae at the onset and peak of virion formation and at corresponding stages in male pupae. This combined approach allowed the identification of 44 CiBV particle proteins: 16 were nudivirus-related, three had similarity to ovarian proteins of another braconid, 11 had similarity to cellular proteins and 14 had no similarity to known proteins. The transcripts of all of them increased in female, but not male, pupae. These data confirm the important contribution of nudivirus genes but also indicate the presence of many lineage-or species-specific proteins possibly involved in the parasitoid-host interaction.

Nasonia vitripennis venom causes targeted gene expression changes in its fly host

Molecular Ecology, 2014

Parasitoid wasps are diverse and ecologically important insects that use venom to modify their host's metabolism for the benefit of the parasitoid's offspring. Thus, the effects of venom can be considered an 'extended phenotype' of the wasp. The model parasitoid wasp Nasonia vitripennis has approximately 100 venom proteins, 23 of which do not have sequence similarity to known proteins. Envenomation by N. vitripennis has previously been shown to induce developmental arrest, selective apoptosis and alterations in lipid metabolism in flesh fly hosts. However, the full effects of Nasonia venom are still largely unknown. In this study, we used high throughput RNA sequencing (RNA-Seq) to characterize global changes in Sarcophaga bullata (Diptera) gene expression in response to envenomation by N. vitripennis. Surprisingly, we show that Nasonia venom targets a small subset of S. bullata loci, with~2% genes being differentially expressed in response to envenomation. Strong upregulation of enhancer of split complex genes provides a potential molecular mechanism that could explain the observed neural cell death and developmental arrest in envenomated hosts. Significant increases in antimicrobial peptides and their corresponding regulatory genes provide evidence that venom could be selectively activating certain immune responses of the hosts. Further, we found differential expression of genes in several metabolic pathways, including glycolysis and gluconeogenesis that may be responsible for the decrease in pyruvate levels found in envenomated hosts. The targeting of Nasonia venom effects to a specific and limited set of genes provides insight into the interaction between the ectoparasitoid wasp and its host.

Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system

Molecular ecology, 2015

Bumble bees are a longstanding model system for studies on behavior, ecology, and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution, and behavior of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in re...

In vitro diagnosis of Hymenoptera venom allergy and further development of component resolved diagnostics

Expert Review of Clinical Immunology, 2014

For most people Hymenoptera stings result in transient and bothersome local inflammatory responses characterized by pain, itching, redness and swelling. In contrast, for those presenting an IgE-mediated allergic reaction, a re-sting may cause life-threatening reactions. In such patients, correct diagnosis is an absolute prerequisite for effective management, i.e. venom-specific immunotherapy. Generally, identification of the offending insect involves a detailed history along with quantification of venom-specific IgE antibodies and venom skin tests. Unfortunately, due to uncertainties associated with both tests, correct diagnosis is not always straightforward. This review summarizes the potentials and limitations of the various in vitro tests that are currently being used in the diagnosis of Hymenoptera venom allergy. Particular attention is paid to the potential of novel cellular tests such as basophil activation tests and component-resolved diagnosis with recombinant venom allergens in the diagnostic approach of patients with difficult diagnosis, i.e. cases in whom traditional venom specific IgE and skin tests yield equivocal or negative results. Finally, this review also covers the recent discoveries in the field of proteome research of Hymenoptera venoms and the selection of cell types for recombinant allergens production.

Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys

BMC Genomics, 2014

Background: Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began.

Web Apollo: a web-based genomic annotation editing platform

Genome biology, 2013

Web Apollo is the first instantaneous, collaborative genomic annotation editor available on the web. One of the natural consequences following from current advances in sequencing technology is that there are more and more researchers sequencing new genomes. These researchers require tools to describe the functional features of their newly sequenced genomes. With Web Apollo researchers can use any of the common browsers (for example, Chrome or Firefox) to jointly analyze and precisely describe the features of a genome in real time, whether they are in the same room or working from opposite sides of the world.

Molecular Techniques for the Detection and Differentiation of Host and Parasitoid Species and the Implications for Fruit Fly Management

Insects, 2012

Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management.

Development of a novel set of Gateway-compatible vectors for live imaging in insect cells

Insect Molecular Biology, 2011

Abstracti mb_1100 1..14 Insect genomics is a growing area of research. To exploit fully the genomic data that are being generated, high-throughput systems for the functional characterization of insect proteins and their interactomes are required. In this work, a Gatewaycompatible vector set for expression of fluorescent fusion proteins in insect cells was developed. The vector set was designed to express a protein of interest fused to any of four different fluorescent proteins [green fluorescent protein (GFP), CFP, YFP and mCherry] by either the C-terminal or the N-terminal ends. Additionally, a collection of organelle-specific fluorescent markers was assembled for colocalization with fluorescent recombinant proteins of interest. Moreover, the vector set was proven to be suitable for simultaneously detecting up to three proteins by multiple labelling. The use of the vector set was exemplified by defining the subcellular distribution of Mal de Río Cuarto virus (MRCV) outer coat protein P10 and by analysing the in vivo self-interaction of the MRCV viroplasm matrix protein P9-1 in Förster resonance energy transfer (FRET) experiments. In conclusion, we have developed a valuable tool for highthroughput studies of protein subcellular localization that will aid in the elucidation of the function of newly described insect and virus proteins.

Venomics of the ectoparasitoid wasp Bracon nigricans

BMC Genomics

Background: Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). Results: Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. Conclusion: The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.

A partial genome assembly of the miniature parasitoid wasp, Megaphragma amalphitanum

PLOS ONE

Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect-the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.

Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts

PeerJ

The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed ...

Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis

PLoS ONE, 2011

Background: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings: We characterize ,1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation.

Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils

Molecular biology and evolution, 2017

The phylogeny and evolution of weevils (the beetle superfamily Curculionoidea) has been extensively studied, but many relationships, especially in the large family Curculionidae (true weevils; > 50000 species), remain uncertain. We used phylogenomic methods to obtain DNA sequences from 522 protein coding genes for representatives of all families of weevils and all subfamilies of Curculionidae. Most of our phylogenomic results had strong statistical support, and the inferred relationships were generally congruent with those reported in previous studies, but with some interesting exceptions. Notably, the backbone relationships of the weevil phylogeny were consistently strongly supported, and the former Nemonychidae (pine flower snout beetles) were polyphyletic, with the subfamily Cimberidinae (here elevated to Cimberididae) placed as sister group of all other weevils. The clade comprising the sister families Brentidae (straight-snouted weevils) and Curculionidae was maximally suppo...

The mlpt/Ubr3/Svb module comprises an ancient developmental switch for embryonic patterning

eLife

Small open reading frames (smORFs) encoding ‘micropeptides’ exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving emb...

Millepattes Micropeptides Are an Ancient Developmental Switch Required for Embryonic Patterning

SummarySmall open reading frames (smORFs) that code for “micropeptides” (10-100 amino acids) exhibit remarkable evolutionary complexity. Conserved micropeptides encoded by the millepattes (mlpt) gene are essential in Tribolium for embryogenesis but in Drosophila, function only in leg and cuticle differentiation. We find that a module identified in Drosophila trichome patterning, comprising Mlpt, UBR3, and Shaven-baby (Svb), coordinates early embryo patterning in several insect orders. Intriguingly, Mlpt segmentation function can be re-awakened in the Drosophila blastoderm, demonstrating the potency of an ancestral developmental switch retained despite evolving embryonic patterning modes. smORFs like millepattes thus illustrate plasticity of micropeptide functions despite constraints of essential genetic networks.One sentence summaryA module comprising the small ORFs mlpt/pri/tal, the transcription factor Svb, and the ubiquitin ligase UBR3, possesses an ancestral function in insect e...

Widespread genome reorganization of an obligate virus mutualist

PLoS genetics, 2014

The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each...

Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera

Scientific Reports

Umami taste perception indicates the presence of amino acids, which are essential nutrients. Although the physiology of umami perception has been described in mammals, how insects detect amino acids remains unknown except in Drosophila melanogaster. We functionally characterized a gustatory receptor responding to L-amino acids in the western honey bee, Apis mellifera. Using a calcium-imaging assay and two-voltage clamp recording, we found that one of the honey bee's gustatory receptors, AmGr10, functions as a broadly tuned amino acid receptor responding to glutamate, aspartate, asparagine, arginine, lysine, and glutamine, but not to other sweet or bitter compounds. furthermore, the sensitivity of AmGr10 to these L-amino acids was dramatically enhanced by purine ribonucleotides, like inosine-5′-monophosphate (iMp). contact sensory hairs in the mouthpart of the honey bee responded strongly to glutamate and aspartate, which house gustatory receptor neurons expressing AmGr10. interestingly, AmGr10 protein is highly conserved among hymenopterans but not other insects, implying unique functions in eusocial insects. The taste system in animals helps discriminate between harmful, mostly bitter-tasting compounds and nutritious, rich foods that contain sugars or fats (which provide energy) and amino acids (which are building blocks for proteins) 1. Most animals as diverse as Drosophila melanogaster and humans recognize five typical tastes: sweet, bitter, umami (amino acid), salty, and sour (acid). In the past 15 years, gustatory receptors (GRs) for many of the canonical tastes have been identified in a variety of vertebrates and invertebrates 2-5. In mammals, the attractive sweet and umami tastes are recognized by heterodimeric G protein-coupled receptors of the T1R1, T1R2, and T1R3 complex 6-9. T1R2 and T1R3 recognize simple sugars, artificial sweeteners, and D-amino acids 6,7 ; T1R1 and T1R3 respond to most of the 20 standard amino acids 8,9. One of the unique characteristics of umami taste is synergism. Purine ribonucleotides including inosine 5′-monophosphate (IMP) and Guanine 5′-monophosphate (GMP) can dramatically enhance the umami taste responses 10. In insects, a large family of genes encoding G protein-coupled receptors, the gustatory receptor (Gr) genes, have been proposed to encode gustatory receptors in the fruit fly 2 , honey bee 11 , mosquito 12 , and silk moth 13. Subsets of Gr genes are expressed in gustatory receptor neurons in the different taste organs, which can discriminate between sweet and bitter tastes 14-19. Although research in a number of insect species has established detailed mechanisms for detecting various sugars and bitter compounds, taste receptors for standard amino acids are still unknown in insect species, except for IRs of D.melanogaster 20. Perception of amino acids is important taste modality, given that amino acids provide an essential nutrient source for insects, especially egg-laying females 21. The quality and quantity of amino acids can enhance insect longevity and fecundity 22. Furthermore, insects prefer sugar solutions enriched with amino acids 23,24 , a behavior that could be mediated by taste receptors. Indeed, the fleshfly and blowfly have labellar sensilla that can respond to amino acids 25,26 , and taste cells in the mosquito and tsetse fly respond to amino acids 27,28. In D. melanogaster, the IR76b neurons, which partial overlap with sugar-sensing neurons, in tarsal taste cells can detect amino acids 20. Also, the labellar taste cells may be specifically sensitive to amino acids 29 , since none of the 18 amino acids tested generated action potentials in the sugar-sensing gustatory receptor neurons 14 .

Genetics of cuticular hydrocarbon differences between males of the parasitoid wasps Nasonia giraulti and Nasonia vitripennis

Heredity, 2011

Many insects rely on cuticular hydrocarbons (CHCs) as major recognition signals between individuals. Previous research on the genetics of CHCs has focused on Drosophila in which the roles of three desaturases and one elongase were highlighted. Comparable studies in other insect taxa have not been conducted so far. Here, we explore the genetics of CHCs in hybrids of the jewel wasps Nasonia giraulti and Nasonia vitripennis. We analyzed the CHC profiles of pure strain and of F 2 hybrid males using gas chromatography coupled with mass spectrometry and distinguished 54 peaks, of which we identified 52 as straight-chain, monounsaturated, or methylbranched CHCs. The latter compound class proved to be particularly abundant and diverse in Nasonia. Quantitative trait locus (QTL) analysis suggests fixed genetic differences between the two strains in 42 of the 54 studied traits, making Nasonia a promising genetic model for identifying genes involved in CHC biosynthesis. QTL for methyl-branched CHCs partly clustered in genomic regions with high recombination rate: a possible indication for pleiotropic genes that control their biosynthesis, which is largely unexplored so far. Finally, we identified and mapped genes in the Nasonia genome with high similarity to genes that have been implicated in alkene biosynthesis in Drosophila and discuss those that match in their position with predicted QTL for alkenes.

IsoPlotter+: A Tool for Studying the Compositional Architecture of Genomes

ISRN Bioinformatics, 2013

Eukaryotic genomes, particularly animal genomes, have a complex, nonuniform, and nonrandom internal compositional organization. The compositional organization of animal genomes can be described as a mosaic of discrete genomic regions, called “compositional domains,” each with a distinct GC content that significantly differs from those of its upstream and downstream neighboring domains. A typical animal genome consists of a mixture of compositionally homogeneous and nonhomogeneous domains of varying lengths and nucleotide compositions that are interspersed with one another. We have devised IsoPlotter, an unbiased segmentation algorithm for inferring the compositional organization of genomes. IsoPlotter has become an indispensable tool for describing genomic composition and has been used in the analysis of more than a dozen genomes. Applications include describing new genomes, correlating domain composition with gene composition and their density, studying the evolution of genomes, te...

Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects

Biological reviews of the Cambridge Philosophical Society, 2017

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are regarded as carriers of pheromones and odorants in insect chemoreception. These proteins are typically located in antennae, mouth organs and other chemosensory structures; however, members of both classes of proteins have been detected recently in other parts of the body and various functions have been proposed. The best studied of these non-sensory tasks is performed in pheromone glands, where OBPs and CSPs solubilise hydrophobic semiochemicals and assist their controlled release into the environment. In some cases the same proteins are expressed in antennae and pheromone glands, thus performing a dual role in receiving and broadcasting the same chemical message. Several reports have described OBPs and CSPs in reproductive organs. Some of these proteins are male specific and are transferred to females during mating. They likely carry semiochemicals with different proposed roles, from inhibiting other males from ap...

Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

PLoS Genetics, 2011

The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, lowrecombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome

PloS one, 2016

Horizontal gene transfer (HGT) is common between prokaryotes and phagotrophic eukaryotes. In metazoans, the scale and significance of HGT remains largely unexplored but is usually linked to a close association with parasites and endosymbionts. Marine sponges (Porifera), which host many microorganisms in their tissues and lack an isolated germ line, are potential carriers of genes transferred from prokaryotes. In this study, we identified a number of potential horizontally transferred genes within the genome of the sponge, Amphimedon queenslandica. We further identified homologs of some of these genes in other sponges. The transferred genes, most of which possess catalytic activity for carbohydrate or protein metabolism, have assimilated host genome characteristics and are actively expressed. The diversity of functions contributed by the horizontally transferred genes is likely an important factor in the adaptation and evolution of A. queenslandica. These findings highlight the poten...

RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera

PloS one, 2016

Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway...

Ecdysteroid receptor docking suggests that dibenzoylhydrazine-based insecticides are devoid of any deleterious effect on the parasitic wasp Psyttalia concolor (Hym. Braconidae)

Pest Management Science, 2012

BACKGROUND: The moulting accelerating compounds (MACs) or ecdysteroid agonists represent a selective group of insecticides acting upon binding to the ecdysteroid receptor (EcR) and leading to lethal premature moulting in larval stages and aborted reproduction in adults. Psyttalia concolor Szèpl. is a useful parasitic wasp attacking important tephritid pests such as the medfly and olive fruit fly. RESULTS: Contact and oral exposure in the laboratory of female parasitic wasps to the dibenzoylhydrazine-based methoxyfenozide, tebufenozide and RH-5849 did not provoke negative effects. No mortality and no reduction in beneficial capacity were observed. The ligand-binding domain (LBD) of the EcR of P. concolor was sequenced, and a homology protein model was constructed which confirmed a cavity structure with 12 α-helices, harbouring the natural insect moulting hormone 20-hydroxyecdysone. However, a steric clash occurred for the MAC insecticides owing to a restricted extent of the ligand-binding cavity of the PcLBD-EcR, while they did dock well in that of susceptible insects. CONCLUSIONS: The insect toxicity assays demonstrated that MACs are selective for P. concolor. The modelling/docking experiments are indications that these insecticides do not bind with the LBD-EcR of P. concolor and support the theory that they show no biological effects in the parasitic wasp. These data may help in explaining the compatible use of MACs together with parasitic wasps in IPM programmes.

Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps

Frontiers in Zoology, 2018

Background: Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species-and sexspecific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con-over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results: We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions: Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior.

Diversity and Evolution of pogo and Tc1/mariner Transposons in the Apoidea Genomes

Biology

Bees (Apoidea), the largest and most crucial radiation of pollinators, play a vital role in the ecosystem balance. Transposons are widely distributed in nature and are important drivers of species diversity. However, transposons are rarely reported in important pollinators such as bees. Here, we surveyed 37 bee genomesin Apoidea, annotated the pogo and Tc1/mariner transposons in the genome of each species, and performed a phylogenetic analysis and determined their overall distribution. The pogo and Tc1/mariner families showed high diversity and low abundance in the 37 species, and their proportion was significantly higher in solitary bees than in social bees. DD34D/mariner was found to be distributed in almost all species and was found in Apis mellifera, Apis mellifera carnica, Apis mellifera caucasia, and Apis mellifera mellifera, and Euglossa dilemma may still be active. Using horizontal transfer analysis, we found that DD29-30D/Tigger may have experienced horizontal transfer (HT)...

The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera?

BMC Ecology and Evolution

Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecot...

Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network

BMC Biology, 2016

Background: Gene regulatory networks (GRNs) underlie developmental patterning and morphogenetic processes, and changes in the interactions within the underlying GRNs are a major driver of evolutionary processes. In order to make meaningful comparisons that can provide significant insights into the evolution of regulatory networks, homologous networks from multiple taxa must be deeply characterized. One of the most thoroughly characterized GRNs is the dorsoventral (DV) patterning system of the Drosophila melanogaster embryo. We have developed the wasp Nasonia as a comparative DV patterning model because it has shown the convergent evolution of a mode of early embryonic patterning very similar to that of the fly, and it is of interest to know whether the similarity at the gross level also extends to the molecular level. Results: We used RNAi to dorsalize and ventralize Nasonia embryos, RNAseq to quantify transcriptome-wide expression levels, and differential expression analysis to identify genes whose expression levels change in either RNAi case. This led to the identification of >100 genes differentially expressed and regulated along the DV axis. Only a handful of these genes are shared DV components in both fly and wasp. Many of those unique to Nasonia are cytoskeletal and adhesion molecules, which may be related to the divergent cell and tissue behavior observed at gastrulation. In addition, many transcription factors and signaling components are only DV regulated in Nasonia, likely reflecting the divergent upstream patterning mechanisms involved in producing the conserved pattern of cell fates observed at gastrulation. Finally, several genes that lack Drosophila orthologs show robust and distinct expression patterns. These include genes with vertebrate homologs that have been lost in the fly lineage, genes that are found only among Hymenoptera, and several genes that entered the Nasonia genome through lateral transfer from endosymbiotic bacteria. Conclusions: Altogether, our results provide insights into how GRNs respond to new functional demands and how they can incorporate novel components.

Next‐generation biological control: the need for integrating genetics and genomics

Biological Reviews

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.

Epigenetics and its implications for ecotoxicology

Ecotoxicology, 2011

Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and populationlevel effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposureinduced epigenetic effects in multiple subsequent generations.

Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera

2020

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odor...

Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera

eLife

Fatty acyl reductases (FARs) are involved in the biosynthesis of fatty alcohols that serve a range of biological roles. Insects typically harbor numerous FAR gene family members. While some FARs are involved in pheromone biosynthesis, the biological significance of the large number of FARs in insect genomes remains unclear.Using bumble bee (Bombini) FAR expression analysis and functional characterization, hymenopteran FAR gene tree reconstruction, and inspection of transposable elements (TEs) in the genomic environment of FARs, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. The expansion occurred in the common ancestor of bumble bees and stingless bees (Meliponini). We found that bumble bee FARs from the expanded FAR-A ortholog group contribute to the species-specific pheromone composition. Our results indicate that expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone c...

Parasitoid Jewel Wasp Mounts Multi-Pronged Neurochemical Attack to Hijack a Host Brain

Molecular & cellular proteomics : MCP, 2018

The parasitoid emerald jewel wasp Ampulex compressa induces a compliant state of hypokinesia in its host, the American cockroach Periplaneta americana through direct envenomation of the central nervous system (CNS). To elucidate the biochemical strategy underlying venom-induced hypokinesia, we subjected the venom apparatus and milked venom to RNAseq and proteomics analyses to construct a comprehensive "venome", consisting of 264 proteins. Abundant in the venome are enzymes endogenous to the host brain, including M13 family metalloproteases, phospholipases, adenosine deaminase, hyaluronidase, and neuropeptide precursors. The amphipathic, alpha-helical ampulexins are among the most abundant venom components. Also prominent are members of the Toll/NF-κB signaling pathway, including proteases Persephone, Snake, Easter, and the Toll receptor ligand Spätzle. We find evidence that venom components are processed following envenomation. The acidic (pH~4) venom contains unprocessed ...

Dnmt2-dependent methylomes lack defined DNA methylation patterns

Proceedings of the National Academy of Sciences, 2013

Several organisms have retained methyltransferase 2 ( Dnmt2 ) as their only candidate DNA methyltransferase gene. However, information about Dnmt2-dependent methylation patterns has been limited to a few isolated loci and the results have been discussed controversially. In addition, recent studies have shown that Dnmt2 functions as a tRNA methyltransferase, which raised the possibility that Dnmt2 -only genomes might be unmethylated. We have now used whole-genome bisulfite sequencing to analyze the methylomes of Dnmt2 -only organisms at single-base resolution. Our results show that the genomes of Schistosoma mansoni and Drosophila melanogaster lack detectable DNA methylation patterns. Residual unconverted cytosine residues shared many attributes with bisulfite deamination artifacts and were observed at comparable levels in Dnmt2 -deficient flies. Furthermore, genetically modified Dnmt2 -only mouse embryonic stem cells lost the DNA methylation patterns found in wild-type cells. Our re...

Genetic architecture of male courtship behavior differences in the parasitoid wasp genus Nasonia (Hymenoptera; Pteromalidae)

2019

Very little is known about the genetic basis of behavioral variation in courtship behavior, which can contribute to speciation by prezygotic isolation of closely related species. Here, we analyze the genetic basis and architecture of species differences in the male courtship behavior of two closely related parasitoid wasps Nasonia vitripennis and N. longicornis. Both species occur microsympatrically in parts of their ranges and have been found in the same host pupae. Despite strong postzygotic isolation mechanisms between these two Nasonia species, viable hybrid females can be produced in the laboratory if both species are cured of their Wolbachia endosymbionts. We used haploid F2 hybrid males derived from virgin F1 hybrid females of two independent mapping populations to study the genetic architecture of five quantitative and two qualitative components of their courtship behavior. A total of 14 independent Quantitative Trait Loci (QTL) were found in the first mapping population (32...

Identification and characterization of Nasonia Pax genes

Insect Molecular Biology, 2010

Pax genes are a group of critical developmental transcriptional regulators in both invertebrates and vertebrates, characterized by the presence of a paired DNA-binding domain. Pax proteins also often contain an octapeptide motif and a C-terminal homeodomain. The genome of Nasonia vitripennis (Hymenoptera) has recently become available, and analysis of this genome alongside Apis mellifera allowed us to contribute to the phylogeny of this gene family in insects. Nasonia, a parasitic wasp, has independently evolved a similar mode of development to that of the wellstudied Drosophila, making it an excellent model system for comparative studies of developmental gene networks. We report the characterization of the seven Nasonia Pax genes. We describe their genomic organization, and the embryonic expression of three of them, and uncover wider conservation of the octapeptide motif than previously described.

Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae

BMC genomics, 2014

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heteroc...

Midgut transcriptome assessment of the cockroach-hunting wasp Ampulex compressa (Apoidea: Ampulicidae)

PLOS ONE, 2021

The emerald jewel wasp Ampulex compressa (Hymenoptera: Ampulicidae) is a solitary wasp that is widely known for its specialized hunting of cockroaches as larvae provision. Adult wasps mainly feed on pollen and nectar, while their larvae feed on the cockroachs’ body, first as ecto- and later as endoparsitoids. Little is known about the expression of digestive, detoxification and stress-response-related genes in the midgut of A. compressa, or about its transcriptional versatility between life stages. To identify gut-biased genes related to digestion, detoxification, and stress response, we explored the midgut transcriptome of lab-reared A. compressa, for both adults and larvae, by focusing on the top 100 significantly up- and down-regulated genes. From the top 100 significantly differentially expressed genes (DEGs), we identified 39 and 36 DEGs putatively related to digestion and detoxification in the adult wasps and larvae, respectively. The two carbohydrases alpha-glucosidase (conta...

Annotation and analysis of yellow genes in Diaphorina citri, vector for the Huanglongbing disease

2020

ABSTRACTHuanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas) and represents a serious threat to global citrus production. This bacteria is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera) and there are no effective in-planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could serve as novel targets for psyllid control. The yellow gene family represents an excellent target as yellow genes are linked to development and immunity due to their roles in melanization. Combined analysis of the genome with RNA-seq datasets, sequence homology, and phylogenetic trees were used to identify and annotate nine yellow genes for the D. citri genome. Phylogenetic analysis shows a unique duplication of yellow-y in D. citri, with life stage specific expression for these two genes. Gen...

Annotation of chitin biosynthesis genes in Diaphorina citri, the Asian citrus psyllid

Gigabyte, 2021

The polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing.

Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America

Heredity, 2010

Here we report evidence of a mitochondrial-Wolbachia sweep in North American populations of the parasitoid wasp Nasonia vitripennis, a cosmopolitan species and emerging model organism for evolutionary and genetic studies. Analysis of the genetic variation of 89 N. vitripennis specimens from Europe and North America was performed using four types of genetic markers: a portion of the mitochondrial cytochrome oxidase I gene, nine polymorphic nuclear microsatellites, sequences from 11 single-copy nuclear markers and six Wolbachia genes. The results show that the European populations have a sevenfold higher mitochondrial sequence variation than North American populations, but similar levels of microsatellite and nuclear gene sequence variation. Variation in the North American mitochondria is extremely low (p ¼ 0.31%), despite a highly elevated mutation rate (B35-40 times higher than the nuclear genes) in the mitochondria of Nasonia. The data are indicative of a mitochondrial sweep in the North American population, possibly due to Wolbachia infections that are maternally co-inherited with the mitochondria. Owing to similar levels of nuclear variation, the data could not resolve whether N. vitripennis originated in the New or the Old World.

Identification and characterization of defensin genes from the endoparasitoid wasp Cotesia vestalis (Hymenoptera: Braconidae)

Journal of Insect Physiology, 2013

Defensins are a class of small and diverse cysteine-rich proteins found in plants, insects, and vertebrates, which share a common tertiary structure and usually exert broad-spectrum antimicrobial activities. We used a bioinformatic approach to scan the Vitis vinifera genome and identified 79 defensin-like sequences (DEFL) corresponding to 46 genes and allelic variants, plus 33 pseudogenes and gene fragments. Expansion and diversification of grapevine DEFL has occurred after the split from the last common ancestor with the genera Medicago and Arabidopsis. Grapevine DEFL localization on the 'Pinot Noir' genome revealed the presence of several clusters likely evolved through local duplications. By sequencing reverse-transcription polymerase chain reaction products, we could demonstrate the expression of grapevine DEFL with no previously reported record of expression. Many of these genes are predominantly or exclusively expressed in tissues linked to plant reproduction, consistent with findings in other plant species, and some of them accumulated at fruit ripening. The transcripts of five DEFL were also significantly upregulated in tissues infected with Botrytis cinerea, a necrotrophic mold, suggesting a role of these genes in defense against this pathogen. Finally, three novel defensins were discovered among the identified DEFL. They inhibit B. cinerea conidia germination when expressed as recombinant proteins.

Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing

BMC genomics, 2015

The honey bee is an important model system for increasing understanding of molecular and neural mechanisms underlying social behaviors relevant to the agricultural industry and basic science. The western honey bee, Apis mellifera, has served as a model species, and its genome sequence has been published. In contrast, the genome of the Asian honey bee, Apis cerana, has not yet been sequenced. A. cerana has been raised in Asian countries for thousands of years and has brought considerable economic benefits to the apicultural industry. A cerana has divergent biological traits compared to A. mellifera and it has played a key role in maintaining biodiversity in eastern and southern Asia. Here we report the first whole genome sequence of A. cerana. Using de novo assembly methods, we produced a 238 Mbp draft of the A. cerana genome and generated 10,651 genes. A.cerana-specific genes were analyzed to better understand the novel characteristics of this honey bee species. Seventy-two percent ...

Horizontal gene transfer in the acquisition of novel traits by metazoans

Proceedings of the Royal Society B: Biological Sciences, 2014

Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals.

Composition and genomic organization of arthropod Hox clusters

EvoDevo, 2016

Background: The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. Results: In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. Conclusions: The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to support an ancestral arthropod Hox cluster of ten genes with a shared orientation, with four Hox geneassociated miRNAs, although the degree of dispersion between genes in an ancestral cluster remains uncertain. Hox3 and abdominal-A orthologs have been lost in multiple, independent lineages, and current data support a model in which inversions of the Abdominal-B locus that result in the loss of abdominal-A correlate with reduced trunk segmentation.

Are the TTAGG and TTAGGG telomeric repeats phylogenetically conserved in aculeate Hymenoptera?

Die Naturwissenschaften, 2017

Despite the (TTAGG)n telomeric repeat supposed being the ancestral DNA motif of telomeres in insects, it was repeatedly lost within some insect orders. Notably, parasitoid hymenopterans and the social wasp Metapolybia decorata (Gribodo) lack the (TTAGG)n sequence, but in other representatives of Hymenoptera, this motif was noticed, such as different ant species and the honeybee. These findings raise the question of whether the insect telomeric repeat is or not phylogenetically predominant in Hymenoptera. Thus, we evaluated the occurrence of both the (TTAGG)n sequence and the vertebrate telomere sequence (TTAGGG)n using dot-blotting hybridization in 25 aculeate species of Hymenoptera. Our results revealed the absence of (TTAGG)n sequence in all tested species, elevating the number of hymenopteran families lacking this telomeric sequence to 13 out of the 15 tested families so far. The (TTAGGG)n was not observed in any tested species. Based on our data and compiled information, we sugg...

Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum

BMC biology, 2018

Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution o...

An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components

Scientific Reports, 2021

During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development...

Advances in the Study of Olfaction in Eusocial Ants

Insects

Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research ...

Kin recognition: Neurogenomic response to mate choice and sib mating avoidance in a parasitic wasp

PLOS ONE, 2020

Sib mating increases homozygosity, which therefore increases the risk of inbreeding depression. Selective pressures have favoured the evolution of kin recognition and avoidance of sib mating in numerous species, including the parasitoid wasp Venturia canescens. We studied the female neurogenomic response associated with sib mating avoidance after females were exposed to courtship displays by i) unrelated males or ii) related males or iii) no courtship (controls). First, by comparing the transcriptional responses of females exposed to courtship displays to those exposed to controls, we saw a rapid and extensive transcriptional shift consistent with social environment. Second, by comparing the transcriptional responses of females exposed to courtship by related to those exposed to unrelated males, we characterized distinct and repeatable transcriptomic patterns that correlated with the relatedness of the courting male. Network analysis revealed 3 modules of specific 'sibresponsive' genes that were distinct from other 'courtship-responsive' modules. Therefore, specific neurogenomic states with characteristic brain transcriptomes associated with different behavioural responses affect sib mating avoidance behaviour.

{"__content__"=>" parasitoid wasps bears a distinct DNA transposon profile.", "i"=>{"__content__"=>"Drosophila"}}

Mobile DNA, 2018

The majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. In this study, we used a combination of de novo and homology approaches to characterize the Mobilome of two non-model parasitoid wasp species. The different methodologies employed for TE characterization recovered TEs with different features as TE consensus number and size. Moreover, some TEs were detected only by one or few methodologies. RepeatExplorer and dnaPipeTE estimated a low TE content of 5.86 and 4.57% for Braconidae wasp and 5.22% and 7.42% for species, respectively. Both mobilomes are composed by a miscellaneous of ancient and recent elements. Braconidae wasps presented a large diversity of Class II TEs while ...

The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host

BMC Genomics, 2019

Background: Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra-and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict. Results: In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes. Conclusion: We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization.

Functional genomics of the stable fly,Stomoxys calcitrans, reveals mechanisms underlying reproduction, host interactions, and novel targets for pest control

2019

BackgroundThe stable fly,Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the United States alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies.ResultsThis study examines stable fly biology by utilizing a combination of high-quality genome sequencing, microbiome analyses, and RNA-seq analyses targeting multiple developmental stages and tissues. In conjunction, manual curation of over 1600 genes was used to examine gene content related to stable fly reproduction, interactions with their host, host-microbe dynamics, and putative routes for control. Most notable was establishment of reproduction-associated genes and identification of expanded vision, ch...

The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control

BMC Biology, 2021

Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional assoc...

High Chemical Diversity in a Wasp Pheromone: a Blend of Methyl 6-Methylsalicylate, Fatty Alcohol Acetates and Cuticular Hydrocarbons Releases Courtship Behavior in the Drosophila Parasitoid Asobara tabida

Journal of Chemical Ecology, 2014

Wasps of genus Asobara, a larval parasitoid of Drosophila, have become model organisms for the study of host-parasite interactions. However, little is known about the role of pheromones in locating mates and courtship behavior in this genus. In the present study, we aimed to identify the female courtship pheromone in Asobara tabida. The chemical compositions of solvent extracts from male and female wasps were analyzed by GC/MS. These extracts, fractions thereof, and synthetic pheromone candidates were tested for their activity in behavioral bioassays. The results demonstrate that the courtship pheromone of A. tabida is characterized by a remarkable chemical diversity. A multi-component blend of female-specific compounds including methyl 6methylsalicylate (M6M), fatty alcohol acetates (FAAs), and cuticular hydrocarbons (CHCs) released male courtship behavior. Using a combinatory approach that included both purified natural products and synthetic analogs, it was shown that none of the three chemical classes alone was sufficient to release a full behavioral response in males. However, a blend of M6M and FAAs or combinations of one or both of these with female-derived CHCs resulted in wing-fanning responses by males comparable to those elicited by the crude extract of females. Thus, components from all three chemical classes contribute to the bioactivity of the pheromone, but none of the elements plays a key role or is irreplaceable. The fact that one of the FAAs, vaccenyl acetate, is also used as a kairomone by Asobara females to locate Drosophila hosts suggests that a pre-existing sensory responsiveness to vaccenyl acetate might have been involved in the evolution of the female sex pheromone in Asobara.

Accelerated Evolution of Innate Immunity Proteins in Social Insects: Adaptive Evolution or Relaxed Constraint?

Molecular Biology and Evolution, 2013

The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway ($10.5 kb) and 20 randomly chosen genes ($16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.

A Chromosome-Level Genome Assembly of the Parasitoid Wasp, Cotesia glomerata (Hymenoptera: Braconidae)

Journal of Heredity, 2021

Hymenopterans make up about 20% of all animal species, but most are poorly known and lack high-quality genomic resources. One group of important, yet understudied hymenopterans are parasitoid wasps in the family Braconidae. Among this understudied group is the genus Cotesia, a clade of ~1,000 species routinely used in studies of physiology, ecology, biological control, and genetics. However, our ability to understand these organisms has been hindered by a lack of genomic resources. We helped bridge this gap by generating a high-quality genome assembly for the parasitoid wasp, Cotesia glomerata (Braconidae; Microgastrinae). We generated this assembly using multiple sequencing technologies, including Oxford Nanopore, whole-genome shotgun sequencing, and 3D chromatin contact information (HiC). Our assembly is one of the most contiguous, complete, and publicly available hymenopteran genomes, represented by 3,355 scaffolds with a scaffold N50 of ~28 Mb and a BUSCO score of ~99%. Given th...

DNA methylation changes induced by long and short photoperiods in Nasonia

Genome research, 2015

Many organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental arrest (diapause) in their progeny, allowing winter survival of the larvae. How female Nasonia control the developmental trajectory of their offspring is unclear. Here, we took advantage of the recent discovery that DNA methylation is pervasive in Nasonia and tested its role in photoperiodism. We used reduced representation bisulfite sequencing (RRBS) to profile DNA methylation in adult female wasps subjected to different photoperiods and identified substantial differential methylation at the single base level. We also show that knocking down DNA methyltransferase 1a (Dnmt1a), Dnmt3, or block...

Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants

BMC evolutionary biology, 2015

The use of transcriptomic and genomic datasets for phylogenetic reconstruction has become increasingly common as researchers attempt to resolve recalcitrant nodes with increasing amounts of data. The large size and complexity of these datasets introduce significant phylogenetic noise and conflict into subsequent analyses. The sources of conflict may include hybridization, incomplete lineage sorting, or horizontal gene transfer, and may vary across the phylogeny. For phylogenetic analysis, this noise and conflict has been accommodated in one of several ways: by binning gene regions into subsets to isolate consistent phylogenetic signal; by using gene-tree methods for reconstruction, where conflict is presumed to be explained by incomplete lineage sorting (ILS); or through concatenation, where noise is presumed to be the dominant source of conflict. The results provided herein emphasize that analysis of individual homologous gene regions can greatly improve our understanding of the un...

Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors

BMC Research Notes, 2015

Background: Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. Results: We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. Conclusions: This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage-specific chemical communication in each ant species.

Epimerisation of chiral hydroxylactones by short-chain dehydrogenases/reductases accounts for sex pheromone evolution in Nasonia

Scientific reports, 2016

Males of all species of the parasitic wasp genus Nasonia use (4R,5S)-5-hydroxy-4-decanolide (RS) as component of their sex pheromone while only N. vitripennis (Nv), employs additionally (4R,5R)-5-hydroxy-4-decanolide (RR). Three genes coding for the NAD(+)-dependent short-chain dehydrogenases/reductases (SDRs) NV10127, NV10128, and NV10129 are linked to the ability of Nv to produce RR. Here we show by assaying recombinant enzymes that SDRs from both Nv and N. giraulti (Ng), the latter a species with only RS in the pheromone, epimerise RS into RR and vice versa with (4R)-5-oxo-4-decanolide as an intermediate. Nv-derived SDR orthologues generally had higher epimerisation rates, which were also influenced by NAD(+) availability. Semiquantitative protein analyses of the pheromone glands by tandem mass spectrometry revealed that NV10127 as well as NV10128 and/or NV10129 were more abundant in Nv compared to Ng. We conclude that the interplay of differential expression patterns and SDR epi...

Chromosome study of the Hymenoptera (Insecta): from cytogenetics to cytogenomics

Comparative Cytogenetics

A brief overview of the current stage of the chromosome study of the insect order Hymenoptera is given. It is demonstrated that, in addition to routine staining and other traditional techniques of chromosome research, karyotypes of an increasing number of hymenopterans are being studied using molecular methods, e.g., staining with base-specific fluorochromes and fluorescence in situ hybridization (FISH), including microdissection and chromosome painting. Due to the advent of whole genome sequencing and other molecular techniques, together with the “big data” approach to the chromosomal data, the current stage of the chromosome research on Hymenoptera represents a transition from Hymenoptera cytogenetics to cytogenomics.

Comprehensive History of CSP Genes: Evolution, Phylogenetic Distribution and Functions

Genes, 2020

In this review we present the developmental, histological, evolutionary and functional properties of insect chemosensory proteins (CSPs) in insect species. CSPs are small globular proteins folded like a prism and notoriously known for their complex and arguably obscure function(s), particularly in pheromone olfaction. Here, we focus on direct functional consequences on protein function depending on duplication, expression and RNA editing. The result of our analysis is important for understanding the significance of RNA-editing on functionality of CSP genes, particularly in the brain tissue.

Behavioral and spermatogenic hybrid male breakdown in Nasonia

Heredity, 2010

Several reproductive barriers exist within the Nasonia species complex, including allopatry, premating behavioral isolation, postzygotic inviability and Wolbachia-induced cytoplasmic incompatibility. Here we show that hybrid males suffer two additional reproductive disadvantages, an inability to properly court females and decreased sperm production. Hybrid behavioral sterility, characterized by a reduced ability of hybrids to perform necessary courtship behaviors, occurs in hybrids between two species of Nasonia. Hybrid males produced in crosses between N. vitripennis and N. giraulti courted females at a reduced frequency (23-69%), compared with wild-type N. vitripennis and N. giraulti males (493%). Reduced courtship frequency was not a simple function of inactivity among hybrids. A strong effect of cytoplasmic (mitochondrial) background was also found in N. vitripennis and N. giraulti crosses; F2 hybrids with giraulti cytoplasm showing reduced ability at most stages of courtship. Hybrids produced between a younger species pair, N. giraulti and N. longicornis, were behaviorally fertile. All males possessed motile sperm, but sperm production is greatly reduced in hybrids between the older species pair, N. vitripennis and N. giraulti. This effect on hybrid males, lowered sperm counts rather than nonfunctional sperm, is different from most described cases of hybrid male sterility, and may represent an earlier stage of hybrid sperm breakdown. The results add to previous studies of F2 hybrid inviability and behavioral sterility, and indicate that Wolbachia-induced hybrid incompatibility has arisen early in species divergence, relative to behavioral sterility and spermatogenic infertility.

DNA methylation plays a crucial role during early Nasonia development

Insect Molecular Biology, 2011

Although the role of DNA methylation in insect development is still poorly understood, the number and role of DNA methyltransferases in insects vary strongly between species. DNA methylation appears to be widely present among the social hymenoptera and functional studies in Apis have suggested a crucial role for de novo methylation in a wide variety of developmental processes. The sequencing of three parasitoid Nasonia genomes revealed the presence of three Dnmt1 (Dnmt1a, Dnmt1b and Dnmt1c) genes and one Dnmt2 and Dnmt3 gene, suggesting a role of DNA methylation in Nasonia development. In the present study we show that in Nasonia vitripennis all Dnmt1 messenger RNAs (mRNAs) and Dnmt3 mRNA are maternally provided to the embryo and, of these, Dnmt1a is essential during early embryogenesis. Lowering of maternal Dnmt1a mRNA results in embryonic lethality during the onset of gastrulation. This dependence on maternal Dnmt1a during embryogenesis in an organismal group outside the vertebrat...

Comparative analysis of nuclear tRNA genes ofNasonia vitripennisand other arthropods, and relationships to codon usage bias

Insect Molecular Biology, 2010

Using bioinformatic methods, we identified a total of 221 and 199 tRNA genes in the nuclear genomes of Nasonia vitripennis and honey bee (Apis mellifera), respectively. We performed comparative analyses of Nasonia tRNA genes with honey bee and other selected insects to understand genomic distribution, sequence evolution and relationship of tRNA copy number with codon usage patterns. Many tRNA genes are located physically close to each other in the form of small clusters in the Nasonia genome. However, the number of clusters and the tRNA genes that form such clusters vary from species to species. In particular, the Ala-, Pro-, Tyr-and His-tRNA genes tend to accumulate in clusters in Nasonia but not in honey bee, whereas the bee contains a long cluster of 15 tRNA genes (of which 13 are Gln-tRNAs) that is absent in Nasonia. Though tRNA genes are highly conserved, contrasting patterns of nucleotide diversity are observed among the arm and loop regions of tRNAs between Nasonia and honey bee. Also, the sequence convergence between the reconstructed ancestral tRNAs and the present day tRNAs suggests a common ancestral origin of Nasonia and honey bee tRNAs. Furthermore, we also present evidence that the copy number of isoacceptor tRNAs (those having a different anticodon but charge the same amino acid) is correlated with codon usage patterns of highly expressed genes in Nasonia.

Annotation of yellow genes in Diaphorina citri, the vector for Huanglongbing disease

GigaByte, 2021

Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas). It is a serious threat to global citrus production. This bacterium is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera). There are no effective in planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could be novel targets for psyllid control. The yellow gene family is an excellent target because yellow genes, which have roles in melanization, are linked to development and immunity. Combined analysis of the genome with RNA-seq datasets, sequence homology, and phylogenetic trees were used to identify and annotate nine yellow genes in the D. citri genome. Manual curation of genes in D. citri provided in-depth analysis of the yellow family among hemipteran insects and provides new targets for molecular control of this psyllid pest. Manual annotation was done as part of a collaborative Citrus Greening community annotation project.

In silico characterization of chitin deacetylase genes in the Diaphorina citri genome

GigaByte, 2021

Chitin deacetylases (CDAs) are one of the least understood components of insect chitin metabolism. The partial deacetylation of chitin polymers appears to be important for the proper formation of higher order chitin structures, such as long fibers and bundles, which contribute to the integrity of the insect exoskeleton and other structures. Some CDAs may also be involved in bacterial defense. Here, we report the manual annotation of four CDA genes from the Asian citrus psyllid, Diaphorina citri, laying the groundwork for future study of these genes.

11. Biological control with parasitoids

Ecology and control of vector-borne diseases, 2018

House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), are common pests in livestock, poultry, and equine facilities. Biological control of these 'filth flies' with pupal parasitoids can be used in conjunction with other control methods as part of an integrated fly management program. The principal filth fly parasitoids include members of the genera Muscidifurax and Spalangia in the hymenopteran family Pteromalidae, as well as others in the family Encyrtidae. Many of these parasitoids are native globally and have been introduced in many areas worldwide. Filth fly parasitoids are generally present in all habitats where suitable hosts can be found, including those associated with poultry, cattle, equine, swine, and other animal operations. They are also commonly occurring in refuse and forensic situations. Naturally occurring populations of parasitoids are typically insufficient to manage fly populations because of the flies' shorter development time and higher fecundity. Augmentation of natural parasitoid populations by releasing commercially-produced parasitoids can increase fly control. Here we review the biology of these biological control agents, and discuss the prospects for their successful use in managing filth fly populations in a variety of animal facilities.

Describing biodiversity in the genomics era: A new species of Nearctic Cynipidae gall wasp and its genome

Systematic Entomology, 2022

ABSTRACTGall wasps (Hymenoptera: Cynipidae) specializing on live oaks in the genus Quercus (subsection Virentes) are a relatively diverse and well‐studied community with 14 species described to date, albeit with incomplete information on their biology, life history and genetic structure. Incorporating an integrative taxonomic approach, we combine morphology, phenology, behaviour, genetics and genomics to describe a new species, Neuroterus valhalla sp. nov. The alternating generations of this species induce galls on the catkins and stem nodes of Quercus virginiana and Quercus geminata in the southern United States. We describe both generations in the species' life cycle, and primarily use samples from a population in the centre of Houston, Texas, thus serving as an example of the undescribed biodiversity still present in well‐travelled urban centres. In parallel, we present a draft assembly of the N. valhalla genome providing a direct link between the type specimen and reference ...

De Novo Transcriptome Hybrid Assembly and Validation in the European Earwig (Dermaptera, Forficula auricularia)

PLoS ONE, 2014

Background: The European earwig (Forficula auricularia) is an established system for studies of sexual selection, social interactions and the evolution of parental care. Despite its scientific interest, little knowledge exists about the species at the genomic level, limiting the scope of molecular studies and expression analyses of genes of interest. To overcome these limitations, we sequenced and validated the transcriptome of the European earwig. Methodology and Principal Findings: To obtain a comprehensive transcriptome, we sequenced mRNA from various tissues and developmental stages of female and male earwigs using Roche 454 pyrosequencing and Illumina HiSeq. The reads were de novo assembled independently and screened for possible microbial contamination and repeated elements. The remaining contigs were combined into a hybrid assembly and clustered to reduce redundancy. A comparison with the eukaryotic core gene dataset indicates that we sequenced a substantial part of the earwig transcriptome with a low level of fragmentation. In addition, a comparative analysis revealed that more than 8,800 contigs of the hybrid assembly show significant similarity to insect-specific proteins and those were assigned for Gene Ontology terms. Finally, we established a quantitative PCR test for expression stability using commonly used housekeeping genes and applied the method to five homologs of known sex-biased genes of the honeybee. The qPCR pilot study confirmed sex specific expression and also revealed significant expression differences between the brain and antenna tissue samples. Conclusions: By employing two different sequencing approaches and including samples obtained from different tissues, developmental stages, and sexes, we were able to assemble a comprehensive transcriptome of F. auricularia. The transcriptome presented here offers new opportunities to study the molecular bases and evolution of parental care and sociality in arthropods.

Regulation of transcription factors on sexual dimorphism of fig wasps

Scientific reports, 2015

Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may ...

Sperm limitation affects sex allocation in a parasitoid wasp Nasonia vitripennis

Insect science, 2018

Insect reproduction is influenced by various external factors including temperature, a well-studied constraint. We investigated to what extent different levels of sperm limitation of males exposed to different heat stresses (34 and 36 °C) affect females' offspring production and sex allocation in Nasonia vitripennis. In this haplodiploid parasitoid wasp attacking different species of pest flies, we investigated the effect of the quantity of sperm females received and stored in their spermatheca on their sperm use decisions, hence sex allocation, over successive ovipositions. In particular, we compared the sex allocation of females presenting three levels of sperm limitation (i.e., mated with control, 34 °C heat-stressed or 36 °C heat-stressed males) on each host they parasitized. To disentangle the potential reduction of sperm quality after a heat stress exposure from that of sperm quantity, we also explored the clutch size and sex ratio produced by females that were partially s...

Phylogenetic placement of the enigmatic longhorned beetle Vesperoctenus flohri Bates (Vesperidae) and a first description of its female internal structures

Arthropod Systematics & Phylogeny, 2021

Taxonomic placement of the enigmatic monotypic Mexican longhorned beetle genus Vesperoctenus Bates is examined through inclusion in and reanalysis of the dataset of Haddad et al. (2018, Systematic Entomology 43: 68–89). We describe and discuss the phylogenetic significance of the internal structures of a recently collected V. flohri female from the Sierra de la Laguna mountain range in Mexico, the same specimen from which phylogenomic data was generated. Our phylogenomic analyses (469 genes) recovered Vesperoctenus with maximal statistical support within the cerambyciform family Vesperidae, sister to Vesperus Dejean (Vesperinae). Vesperus + Vesperoctenus were recovered sister to Philinae, and collectively form a clade sister to Anoplodermatinae. Thus, we place V. flohri within Vesperidae: Vesperinae: Vesperoctenini based on analyses of large-scale phylogenomic data. Finally, we propose that the conservation status of V. flohri merits assessment.

Quantitative genetics of wing morphology in the parasitoid wasp Nasonia vitripennis: hosts increase sibling similarity

Heredity, 2020

The central aim of evolutionary biology is to understand patterns of genetic variation between species and within populations. To quantify the genetic variation underlying intraspecific differences, estimating quantitative genetic parameters of traits is essential. In Pterygota, wing morphology is an important trait affecting flight ability. Moreover, gregarious parasitoids such as Nasonia vitripennis oviposit multiple eggs in the same host, and siblings thus share a common environment during their development. Here we estimate the genetic parameters of wing morphology in the outbred HVRx population of N. vitripennis, using a sire-dam model adapted to haplodiploids and disentangled additive genetic and host effects. The results show that the wing-size traits have low heritability (h 2~0 .1), while most wing-shape traits have roughly twice the heritability compared with wing-size traits. However, the estimates increased to h 2~0 .6 for wing-size traits when omitting the host effect from the statistical model, while no meaningful increases were observed for wing-shape traits. Overall, host effects contributed to~50% of the variation in wing-size traits. This indicates that hosts have a large effect on wing-size traits, about fivefold more than genetics. Moreover, bivariate analyses were conducted to derive the genetic relationships among traits. Overall, we demonstrate the evolutionary potential for morphological traits in the N. vitripennis HVRx-outbred population, and report the host effects on wing morphology. Our findings can contribute to a further dissection of the genetics underlying wing morphology in N. vitripennis, with relevance for gregarious parasitoids and possibly other insects as well.

Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera

bioRxiv (Cold Spring Harbor Laboratory), 2018

The conserved fatty acyl reductase (FAR) family is involved in biosynthesis of fatty alcohols that serve a range of biological roles. In moths, butterflies (Lepidoptera), and bees (Hymenoptera), FARs biosynthesize fatty alcohol pheromones participating in mate-finding strategies. Using a combination of next-generation sequencing, analysis of transposable elements (TE) in the genomic environment of FAR genes, and functional characterization of FARs from Bombus lucorum, B. lapidarius, and B. terrestris, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. Expansion occurred in the common ancestor of bumblebees (Bombini) and stingless bees (Meliponini) after their divergence from the honeybee lineage. We found that FARs from the expanded FAR-A orthology group contributed to the species-specific male marking pheromone composition. Our results indicate that TE-mediated expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone communication in the crown group of Hymenoptera.

A New Component of the Nasonia Sex Determining Cascade Is Maternally Silenced and Regulates Transformer Expression

Plos One, 2013

Although sex determination is a universal process in sexually reproducing organisms, sex determination pathways are among the most highly variable genetic systems found in nature. Nevertheless, general principles can be identified among the diversity, like the central role of transformer (tra) in insects. When a functional TRA protein is produced in early embryogenesis, the female sex determining route is activated, while prevention of TRA production leads to male development. In dipterans, male development is achieved by prevention of female-specific splicing of tra mRNA, either mediated by Xchromosome dose or masculinizing factors. In Hymenoptera, which have haplodiploid sex determination, complementary sex determination and maternal imprinting have been identified to regulate timely TRA production. In the parasitoid Nasonia, zygotic transformer (Nvtra) expression and splicing is regulated by a combination of maternal provision of Nvtra mRNA and silencing of Nvtra expression in unfertilized eggs. It is unclear, however, if this silencing is directly on the tra locus or whether it is mediated through maternal silencing of a trans-acting factor. Here we show that in Nasonia, female sex determination is dependent on zygotic activation of Nvtra expression by an as yet unknown factor. This factor, which we propose to term womanizer (wom), is maternally silenced during oogenesis to ensure male development in unfertilized eggs. This finding implicates the upstream recruitment of a novel gene in the Nasonia sex determining cascade and supports the notion that sex determining cascades can rapidly change by adding new components on top of existing regulators.

Transcriptome profiling of Diachasmimorpha longicaudata towards useful molecular tools for population management

BMC genomics, 2016

Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. We report here the first transcriptome analysis of ma...