Morphology and neurophysiology of focal axonal injury experimentally induced in the guinea pig optic nerve (original) (raw)

Growth of injured rabbit optic axons within their degenerating optic nerve

The Journal of Comparative Neurology, 1990

Spontaneous growth of axons after injury is extremely limited in the mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can be induced to elongate when provided with a suitable environment. Thus injured CNS axons can elongate, but they do not do so unless their environment is altered.

Post-Acute Alterations in the Axonal Cytoskeleton after Traumatic Axonal Injury

Journal of Neurotrauma, 2003

In the present study we tested the hypothesis that there are, in addition, ultrastructural pathological changes up to 1 week after injury. TAI was induced in the adult guinea pig optic nerve of nine animals. Three animals were killed at either 4 h, 24 h, or 7 days (d) after injury. Quantitative analysis of the number or proportion of axons within 0.5-mm-wide bins showed an increase in the number of axons with a diameter of less than 0.5 mm at 4 h, 24 h, and 7 d, the presence of lucent axons at 24 h and 7 d and that the highest number of injured axons occurred about half way along the length of the nerve. A spectrum of pathological changes occurred in injured fibers-pathology of mitochondria; dissociation of myelin lamellae but little damage to the axon; loss of linear register of the axonal cytoskeleton; differential responses between microtubules (MT) and neurofilaments (NF) in different sizes of axon; two different sites of compaction of NF; loss of both NF (with an increase in their spacing) and MT (with a reduction in their spacing); replacement of the axoplasm by a flocculent precipitate; and an increased length of the nodal gap. These provide the first ultrastructural evidence for Wallerian degeneration of nerve fibers in an animal model of TAI.

Axonal Cytoskeletal Changes After Nondisruptive Axonal Injury. II. Intermediate Sized Axons

Journal of Neurotrauma, 1998

In animal models of human diffuse axonal injury, axonal swellings leading to secondary axotomy occur between 2 and 6 h after injury. But, analysis of cytoskeletal changes associated with secondary axotomy has not been undertaken. We have carried out a quantitative analysis of cytoskeletal changes in a model of diffuse axonal injury 4 h after stretch-injury to adult guinea-pig optic nerves. The major site of axonal damage was the middle portion of the nerve. There was a statistically significant increase in the proportion of small axons with a diameter of 0.5 m and smaller in which there was compaction of neurofilaments. Axons with a diameter greater than 2.0 m demonstrated an increased spacing between cytoskeletal elements throughout the length of the nerve. However, in the middle segment of the nerve these larger axons demonstrated two different types of response. Either, where periaxonal spaces occurred, there was a reduction in axonal calibre, compaction of neurofilaments but no change in their number, and a loss of microtubules. Or, where intramyelinic spaces occurred there was an increased spacing between neurofilaments and microtubules with a significant loss in the number of both. Longitudinal sections showed foci of compaction of neurofilaments interspersed between regions where axonal structure was apparently normal. Neurofilament compaction was correlated with disruption of the axolemma at these foci present some hours after injury. We suggest that the time course of these axonal cytoskeletal changes after stretch-injury to central axons is shorter than those changes documented to occur during Wallerian degeneration.

Axonal cytoskeletal changes after non-disruptive axonal injury

Journal of Neurocytology, 1997

In animal models of human diffuse axonal injury, axonal swellings leading to secondary axotomy occur between 2 and 6 h after injury. But, analysis of cytoskeletal changes associated with secondary axotomy has not been undertaken. We have carried out a quantitative analysis of cytoskeletal changes in a model of diffuse axonal injury 4 h after stretch-injury to adult guinea-pig optic nerves. The major site of axonal damage was the middle portion of the nerve. There was a statistically significant increase in the proportion of small axons with a diameter of 0.5 μm and smaller in which there was compaction of neurofilaments. Axons with a diameter greater than 2.0 μm demonstrated an increased spacing between cytoskeletal elements throughout the length of the nerve. However, in the middle segment of the nerve these larger axons demonstrated two different types of response. Either, where periaxonal spaces occurred, there was a reduction in axonal calibre, compaction of neurofilaments but no change in their number, and a loss of microtubules. Or, where intramyelinic spaces occurred there was an increased spacing between neurofilaments and microtubules with a significant loss in the number of both. Longitudinal sections showed foci of compaction of neurofilaments interspersed between regions where axonal structure was apparently normal. Neurofilament compaction was correlated with disruption of the axolemma at these foci present some hours after injury. We suggest that the time course of these axonal cytoskeletal changes after stretch-injury to central axons is shorter than those changes documented to occur during Wallerian degeneration.

Changes in retinal ganglion cell axons after optic nerve crush: neurofilament expression is not the sole determinant of calibre

Biochemistry and Cell Biology, 1995

After injury in the central nervous system of adult mammals, many of the axons that remain attached to their intact cell bodies degenerate and decrease in calibre. To understand this process better, we have investigated the relationship between axonal loss, cell loss, and the time course of changes in axonal calibre. Optic nerves (ONs) were crushed and the numbers and sizes of axons remaining close to the cell bodies (2 mm from the eye) and near the site of the lesion (6 mm from the eye) were determined for nerves examined between 1 week and 3 months after injury. Comparison with the retinal ganglion cell (RGC) counts from the same animals revealed that axonal loss was concomitant with cell body loss for at least the first 2 weeks after injury. However, there was no significant change in the calibre of the surviving neurons until 1 month after injury. Thereafter, the axonal calibre was decreased equally along the ON. No progressive somatofugal atrophy was observed. These decreases i...

Retinal Ganglion Cell and Nonneuronal Cell Responses to a Microcrush Lesion of Adult Rat Optic Nerve

Experimental Neurology, 2001

Injury of the optic nerve has served as an important model for the study of cell death and axon regeneration in the CNS. Analysis of axon sprouting and regeneration after injury by anatomical tracing are aided by lesion models that produce a well-defined injury site. We report here the characterization of a microcrush lesion of the optic nerve made with 10-0 sutures to completely transect RGC axons. Following microcrush lesion, 62% of RGCs remained alive 1 week later, and 28% of RGCs, at 2 weeks. Optic nerve sections stained by hematoxylin-based methods showed a thin line of intensely stained cells that invaded the lesion site at 24 h after microcrush lesion. The lesion site became increasingly disorganized by 2 weeks after injury, and both macrophages and blood vessels invaded the lesion site. The microcrush lesion was immunoreactive for chondroitin sulfate proteoglycans (CSPG), and an adjacent GFAP-negative zone developed early after the lesion, disappearing by 1 week. Luxol fast blue staining showed a myelin-free zone at the lesion site, and myelin remained distal to the lesion at 8 weeks. To study the axonal response to microcrush lesion, anterograde tracing was used. Within 6 h after injury all RGC axons retracted back from the site of lesion. By 1 week after injury, axons regrew toward the lesion, but most stopped abruptly at the injury scar. The few axons that were able to cross the injury site did not extend further in the optic nerve white matter by 8 weeks postlesion. Our observations suggest that both the CSPG-positive scar and the myelin-derived growth inhibitory proteins contribute to the failure of RGC regeneration after injury.

Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush

Journal of Neurocytology, 1986

Rat retinal ganglion cell layer (GCL) was examined ultrastructurally 1-180 days after intraorbital crushing of one optic nerve. It was confirmed quantitatively that axotomized ganglion cells lost cisternal membranes of the rough endoplasmic reticulum (RER) and showed disintegration of Nissl bodies and ribosomal rosettes 3 days postoperatively. Between 60 and 180 days after neurotomy there was partial reversion of the RER towards normal. At postoperative intervals of 14-60 days, chromatin aggregation became conspicuous and some nuclei were prominently furrowed and contained electron-dense inclusions. Concurrently, profiles of dead ganglion cells were encountered. Mean mitochondrial area increased in axotomized neurons but mitochondrial density declineds while the Golgi apparatus, lametlar specializations of the RER and the size of nuclei did not change significantly. Cytoplasmic atrophy was profound, however. Small nerve cells of the GCL appeared morphologically distinct from ganglion cells and did not undergo appreciable alteration.

Temporal assessment of traumatic axonal injury in the rat corpus callosum and optic chiasm

Brain Research, 2012

Impaired axoplasmic transport (IAT) and neurofilament compaction (NFC), two common axonal pathology processes involved in traumatic axonal injury (TAI), have been well characterized. TAI is found clinically and in animal models in brainstem white matter (WM) tracts and in the corpus callosum (CC), optic chiasm (Och), and internal capsule. Previous published quantitative studies of the time course of TAI expression induced by the Marmarou impact acceleration model have been limited to the brainstem. Accordingly, this study assessed the extent of IAT and NFC in the CC and Och at 8 h, 28 h, 3 days and 7 days after traumatic brain injury (TBI) induction by the Marmarou impact acceleration model. IAT peak density was observed at 8 h in the CC and 28 h in the Och post-TBI. NFC peak density was observed at 28 h in both structures. The density of IAT and NFC decreased with increasing survival time in both structures. The NFC density time profile followed a similar trend in both the Och and CC, whereas the IAT density time profile was variable between the Och and CC. Furthermore, a strong linear relationship was observed between IAT and NFC in the CC but not in the Och. These findings highlight the heterogeneity of TAI as evidenced by variable IAT and NFC injury time profiles in each anatomical structure. This variability indicates the requirement of multiple markers for a comprehensive TAI evaluation and multiple targeted treatments for TAI polypathology within its therapeutic window time frame.