Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer (original) (raw)

Design, Synthesis, Calorimetry, and Crystallographic Analysis of 2-Alkylaminoethyl-1,1-bisphosphonates as Inhibitors of Trypanosoma cruzi Farnesyl Diphosphate Synthase

Journal of Medicinal Chemistry, 2012

Linear 2-alkylaminoethyl-1,1-bisphosphonates are effective agents against proliferation of Trypanosoma cruzi-the etiologic agent of American trypanosomiasis (Chagas disease)-exhibiting IC 50 values in the nanomolar range against the parasites. This activity is associated with inhibition at the low nanomolar level of the T. cruzi farnesyl diphosphate synthase (TcFPPS). X-ray structures and thermodynamic data of the complexes TcFPPS with five compounds of this family show that the inhibitors bind to the allylic site of the enzyme with their alkyl chain occupying the cavity that binds the isoprenoid chain of the substrate. The compounds bind to TcFPPS with unfavorable enthalpy compensated by a favorable entropy that results from a delicate balance between two opposing effects: the loss of conformational entropy due to freezing of single bond rotations, and the favorable burial of the hydrophobic alkyl chains. The data suggest that introduction of strategically placed double bonds and methyl branches should increase affinity substantially.

Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: Implications for drug design

Proteins: Structure, Function and Genetics, 2006

Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C 5 alcohols (isopentenyl and dimethylallyl) to form C 10 and C 15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg 2؉ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate. Proteins 2006;62:80 -88.

Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase

Bioorganic & Medicinal Chemistry Letters, 2003

Studies on the mode of action of a series of bisphosphonates derived from fatty acids, which had previously proved to be potent inhibitors against Trypanosoma cruzi proliferation in in vitro assays, have been performed. Some of these drugs proved to be potent inhibitors against the intracellular form of the parasite, exhibiting IC 50 values at the low micromolar level. As bisphosphonates are FDA clinically approved for treatment of bone resorption disorders, their potential innocuousness makes them good candidates to control tropical diseases. #

Bisphosphonate metal complexes as selective inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase

Dalton Transactions, 2012

In the search for a pharmacological answer to treat Chagas disease, eight metal complexes with two bioactive bisphosphonates, alendronate (Ale) and pamidronate (Pam), were described. Complexes of the formula [M 2 II (Ale) 4 (H 2 O) 2 ]•2H 2 O, with M = Cu, Co, Mn, Ni, and ([CuPam]•H 2 O) n as well as [M II (Pam) 2 (H 2 O) 2 ]•3H 2 O, with M = Co, Mn and Ni, were synthesized and fully characterized. Crystal structure of [Cu 2 II (Ale) 4 (H 2 O) 2 ]•2H 2 O, [Co II (Pam) 2 (H 2 O) 2 ] and [Ni II (Pam) 2 (H 2 O) 2 ] were solved by X-ray single crystal diffraction methods and the structures of [M 2 II (Ale) 4 (H 2 O) 2 ]•2H 2 O complexes M = Co, Mn and Ni were studied by X-ray powder diffraction methods. All obtained complexes were active against the amastigote form of Trypanosoma cruzi (T. cruzi), etiological agent of Chagas disease. Most of them were more active than the corresponding free ligands showing no toxicity for mammalian cells. The main mechanism of the antiparasitic action of bisphosphonates, inhibition of parasitic farnesyl diphosphate synthase (TcFPPS), remains in the obtained metal complexes and an increase in the inhibiting enzyme levels was observed upon coordination. Observed enzymatic inhibition was selective for TcFPPS as the metal complexes showed no or little inhibition of human FPPS. Additionally, metal complexation might improve the bioavailability of the complexes through the hindrance of the phosphonate group's ionization at physiological pH and, eventually, through the ability of plasma proteins to work as complex transporters. † Electronic supplementary information (ESI) available. CCDC 799811-799813. For ESI and crystallographic data in CIF or other electronic format see

Molecular interactions of nitrogen-containing bisphosphonates within farnesyl diphosphate synthase

Journal of Organometallic Chemistry, 2005

Bisphosphonates, known for their effectiveness in the treatment of osteoporosis, inhibit bone resorption via mechanisms that involve binding to bone mineral and cellular effects on osteoclasts. The major molecular target of nitrogen-containing bisphosphonates (N-BPs) in osteoclasts is farnesyl diphosphate synthase (FPPS). N-BPs likely inhibit this enzyme by mimicking one or more of the natural isoprenoid lipid substrates (GPP/DMAPP and IPP) but the mode of inhibition is not established. The active site of FPPS comprises a subsite for each substrate. Kinetic studies with recombinant human FPPS indicate that both potent (risedronate) and weak (NE-58051) enzyme inhibitors compete with GPP for binding to FPPS, however, binding to this site does not completely explain the difference in potency of the two inhibitors, suggesting that a second binding site may also be a target of bisphosphonate inhibition. Using the docking software suite Autodock, we explored a dual inhibitor binding mode for recombinant human FPPS. Experimental support for dual binding is suggested by Dixon plots for the inhibitors. N-BPs may inhibit by binding to both the GPP and a second site with differences in potency at least partly arising from inhibition at the second site.

Bisphosphonates Inhibit the Growth of Trypanosoma b rucei , Trypanosoma c ruzi , Leishmania d onovani , Toxoplasma g ondii , and Plasmodium f alciparum : A Potential Route to Chemotherapy

Journal of Medicinal Chemistry, 2001

We have investigated the effects in vitro of a series of bisphosphonates on the proliferation of Trypanosoma cruzi, Trypanosoma brucei rhodesiense, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum. The results show that nitrogen-containing bisphosphonates of the type used in bone resorption therapy have significant activity against parasites, with the aromatic species having in some cases nanomolar or low-micromolar IC 50 activity values against parasite replication (e.g. o-risedronate, IC 50 ) 220 nM for T. brucei rhodesiense; risedronate, IC 50 ) 490 nM for T. gondii). In T. cruzi, the nitrogen-containing bisphosphonate risedronate is shown to inhibit sterol biosynthesis at a pre-squalene level, most likely by inhibiting farnesylpyrophosphate synthase. Bisphosphonates therefore appear to have potential in treating parasitic protozoan diseases.

Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase

Bioorganic & Medicinal Chemistry, 2011

The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC 50 values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC 50 value of 0.84 lM, while this compound showed an IC 50 value of 0.49 lM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC 50 values of 4.1 lM and 2.6 lM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 lM and 0.25 lM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.

Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase

Bioorganic & Medicinal Chemistry, 2008

The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC 50 values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC 50 value of 0.84 lM, while this compound showed an IC 50 value of 0.49 lM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC 50 values of 4.1 lM and 2.6 lM, respectively. In this case, 19 inhibited at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 lM and 0.25 lM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.

Bisphosphonates Inhibit the Growth of Trypanosoma Brucei, Trypanosoma Cruzi, Leishmania Donovani, Toxoplasma Gondii, and Plasmodium Falciparum: a Potential …

J. Med. …, 2001

We have investigated the effects in vitro of a series of bisphosphonates on the proliferation of Trypanosoma cruzi, Trypanosoma brucei rhodesiense, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum. The results show that nitrogen-containing bisphosphonates of the type used in bone resorption therapy have significant activity against parasites, with the aromatic species having in some cases nanomolar or low-micromolar IC 50 activity values against parasite replication (e.g. o-risedronate, IC 50) 220 nM for T. brucei rhodesiense; risedronate, IC 50) 490 nM for T. gondii). In T. cruzi, the nitrogen-containing bisphosphonate risedronate is shown to inhibit sterol biosynthesis at a pre-squalene level, most likely by inhibiting farnesylpyrophosphate synthase. Bisphosphonates therefore appear to have potential in treating parasitic protozoan diseases.

Synthesis and biological evaluation of 2-alkylaminoethyl-1, 1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate …

Bioorganic & medicinal …, 2008

The effect of a series of 2-alkylaminoethyl-1,1-bisphosphonic acids against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas’ disease), and against tachyzoites of Toxoplasma gondii has been studied. Most of these drugs exhibited an extremely potent inhibitory action against the intracellular form of T. cruzi, exhibiting IC50 values at the low micromolar level. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas’ disease chemotherapy. Compound 17 was an effective agent against amastigotes exhibiting an IC50 value of 0.84 μM, while this compound showed an IC50 value of 0.49 μM against the target enzyme TcFPPS. Interestingly, compound 19 was very effective against both T. cruzi and T. gondii exhibiting IC50 values of 4.1 μM and 2.6 μM, respectively. In this case, 19 inhibited in at least two different enzymes of T. cruzi (TcFPPS and solanesyl diphosphate synthase (TcSPPS); 1.01 μM and 0.25 μM, respectively), while it inhibited TgFPPS in T. gondii. In general, this family of drugs was less effective against the activity of T. cruzi SPPS and against T. gondii growth in vitro. As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control tropical diseases.