Inhibition of the Polyamine System Counteracts β-Amyloid Peptide-Induced Memory Impairment in Mice: Involvement of Extrasynaptic NMDA Receptors (original) (raw)
In Alzheimer's disease (AD), the b-amyloid peptide (Ab) has been causally linked to synaptic dysfunction and cognitive impairment. Several studies have shown that N-Methyl-D-Aspartate receptors (NMDAR) activation is involved in the detrimental actions of Ab. Polyamines, like spermidine and spermine, are positive modulators of NMDAR function and it has been shown that their levels are regulated by Ab. In this study we show here that interruption of NMDAR modulation by polyamines through blockade of its binding site at NMDAR by arcaine (0.02 nmol/site), or inhibition of polyamine synthesis by DFMO (2.7 nmol/site), reverses Ab 25-35 -induced memory impairment in mice in a novel object recognition task. Incubation of hippocampal cell cultures with Ab 25-35 (10 mM) significantly increased the nuclear accumulation of Jacob, which is a hallmark of NMDAR activation. The Ab-induced nuclear translocation of Jacob was blocked upon application of traxoprodil (4 nM), arcaine (4 mM) or DFMO (5 mM), suggesting that activation of the polyamine binding site at NMDAR located probably at extrasynaptic sites might underlie the cognitive deficits of Ab 25-35 -treated mice. Extrasynaptic NMDAR activation in primary neurons results in a stripping of synaptic contacts and simplification of neuronal cytoarchitecture. Ab 25-35 application in hippocampal primary cell cultures reduced dendritic spine density and induced alterations on spine morphology. Application of traxoprodil (4 nM), arcaine (4 mM) or DFMO (5 mM) reversed these effects of Ab 25-35 . Taken together these data provide evidence that polyamine modulation of extrasynaptic NMDAR signaling might be involved in Ab pathology.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.