NRG-CING: integrated validation reports of remediated experimental biomolecular NMR data and coordinates in wwPDB (original) (raw)

BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank

Journal of biomolecular NMR, 2003

Experimental constraints associated with NMR structures are available from the Protein Data Bank (PDB) in the form of "Magnetic Resonance" (MR) files. These files contain multiple types of data concatenated without boundary markers and are difficult to use for further research. Reported here are the results of a project initiated to annotate, archive, and disseminate these data to the research community from a searchable resource in a uniform format. The MR files from a set of 1410 NMR structures were analyzed and their original constituent data blocks annotated as to data type using a semi-automated protocol. A new software program called Wattos was then used to parse and archive the data in a relational database. From the total number of MR file blocks annotated as constraints, it proved possible to parse 84% (3337/3975). The constraint lists that were parsed correspond to three data types (2511 distance, 788 dihedral angle, and 38 residual dipolar couplings lists) from ...

BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions

Journal of Biomolecular NMR, 2008

We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems.

The NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries

Journal of Biomolecular NMR, 2009

Several pilot experiments have indicated that improvements in older NMR structures can be expected by applying modern software and new protocols (Nabuurs et al. in Proteins 55:483-186, 2004; Nederveen et al. in Proteins 59:662-672, 2005; Saccenti and Rosato in J Biomol NMR 40:251-261, 2008). A recent large scale X-ray study also has shown that modern software can significantly improve the quality of X-ray structures that were deposited more than a few years ago (Joosten et al. in J.

The Accuracy of NMR Protein Structures in the Protein Data Bank

SSRN Electronic Journal, 2021

We recently described a method, ANSURR, for measuring the accuracy of NMR protein structures. It is based on comparing residue-specific measures of rigidity from backbone chemical shifts via the random coil index, and from structures. Here, we report the use of ANSURR to analyse NMR ensembles within the Protein Data Bank (PDB). NMR structures cover a wide range of accuracy, which improved over time until about 2005, since when accuracy has not improved. Most structures have accurate secondary structure, but are too floppy, particularly in loops. There is a need for more experimental restraints in loops. The best current accuracy measures are Ramachandran distribution and number of NOE restraints per residue. The precision of structure ensembles correlates with accuracy, as does the number of hydrogen bond restraints per residue. If a structure contains additional components (such as additional polypeptide chains or ligands), then their inclusion improves accuracy. Analysis of over 7000 PDB NMR ensembles is available via our website ansurr.com. .

An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

Journal of Biomolecular NMR, 2012

Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1 H, 13 C and 15 N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001-2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

Concepts and tools for NMR restraint analysis and validation

Concepts in Magnetic Resonance, 2004

The quality of NMR-derived biomolecular structure models can be assessed by validation on the level of structural characteristics as well as the NMR data used to derive the structure models. Here, an overview is given of the common methods to validate experimental NMR data. These methods provide measures of quality and goodness of fit of the structure to the data. A detailed discussion is given of newly developed methods to assess the information contained in experimental NMR restraints, which provide powerful tools for validation and error analysis in NMR structure determination.

Straightforward and complete deposition of NMR data to the PDBe

Journal of Biomolecular NMR, 2010

We present a suite of software for the complete and easy deposition of NMR data to the PDB and BMRB. This suite uses the CCPN framework and introduces a freely downloadable, graphical desktop application called CcpNmr Entry Completion Interface (ECI) for the secure editing of experimental information and associated datasets through the lifetime of an NMR project. CCPN projects can be created within the CcpNmr Analysis software or by importing existing NMR data files using the CcpNmr FormatConverter. After further data entry and checking with the ECI, the project can then be rapidly deposited to the PDBe using AutoDep, or exported as a complete deposition NMR-STAR file. In full CCPN projects created with ECI, it is straightforward to select chemical shift lists, restraint data sets, structural ensembles and all relevant associated experimental collection details, which all are or will become mandatory when depositing to the PDB.

Recommendations of the wwPDB NMR Validation Task Force

Structure, 2013

As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with the wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment.

The 100-protein NMR spectra dataset: A resource for biomolecular NMR data analysis

Scientific Data, 2024

Multidimensional NMR spectra are the basis for studying proteins by NMR spectroscopy and crucial for the development and evaluation of methods for biomolecular NMR data analysis. Nevertheless, in contrast to derived data such as chemical shift assignments in the BMRB and protein structures in the PDB databases, this primary data is in general not publicly archived. To change this unsatisfactory situation, we present a standardized set of solution NMR data comprising 1329 2-4-dimensional NMR spectra and associated reference (chemical shift assignments, structures) and derived (peak lists, restraints for structure calculation, etc.) annotations. With the 100-protein NMR spectra dataset that was originally compiled for the development of the ARTINA deep learning-based spectra analysis method, 100 protein structures can be reproduced from their original experimental data. The 100-protein NMR spectra dataset is expected to help the development of computational methods for NMR spectroscopy, in particular machine learning approaches, and enable consistent and objective comparisons of these methods.