Oxidative Stress in HPV-Driven Viral Carcinogenesis: Redox Proteomics Analysis of HPV-16 Dysplastic and Neoplastic Tissues (original) (raw)
Related papers
Cellular redox, cancer and human papillomavirus
High-risk Human Papillomavirus (HR-HPV) is the causative agent of different human cancers. A persistent HR-HPV infection alters several cellular processes involved in cell proliferation, apoptosis, immune evasion, genomic instability and transformation. Cumulative evidence from past studies indicates that HR-HPV proteins are associated with oxidative stress (OS) and has been proposed as a risk factor for cancer development.
Emerging paradigms: unmasking the role of oxidative stress in HPV-induced carcinogenesis
The contribution of the human papillomavirus (HPV) to cancer is significant but not exclusive, as carcinogenesis involves complex mechanisms, notably oxidative stress. Oxidative stress and HPV can independently cause genome instability and DNA damage, contributing to tumorigenesis. Oxidative stress-induced DNA damage, especially double-strand breaks, aids in the integration of HPV into the host genome and promotes the overexpression of two viral proteins, E6 and E7. Lifestyle factors, including diet, smoking, alcohol, and psychological stress, along with genetic and epigenetic modifications, and viral oncoproteins may influence oxidative stress, impacting the progression of HPV-related cancers. This review highlights various mechanisms in oxidative-induced HPV-mediated carcinogenesis, including altered mitochondrial morphology and function leading to elevated ROS levels, modulation of antioxidant enzymes like Superoxide Dismutase (SOD), Glutathione (GSH), and Glutathione Peroxidase (GPx), induction of chronic inflammatory environments, and activation of specific cell signaling pathways like the Phosphoinositide 3-kinase, Protein kinase B, Mammalian target of rapamycin (PI3K/AKT/mTOR) and the Extracellular signal-regulated kinase (ERK) signaling pathway. The study highlights the significance of comprehending and controlling oxidative stress in preventing and treating cancer. We suggested that incorporating dietary antioxidants and targeting cancer cells through mechanisms involving ROS could be potential interventions to mitigate the impact of oxidative stress on HPV-related malignancies.
International journal of biological sciences, 2018
Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decre...
Oxidative stress: therapeutic approaches for cervical cancer treatment
Clinics
Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
Oxidative stress and oxidative damage in chemical carcinogenesis
Toxicology and Applied Pharmacology, 2011
Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.
Oxidative Stress and Oxidative Damage in Carcinogenesis
Toxicologic Pathology, 2009
Carcinogenesis is a multistep process involving mutation and the subsequent selective clonal expansion of the mutated cell. Chemical and physical agents including those that induce reative oxygen species can induce and/or modulate this multistep process. Several modes of action by which carcinogens induce cancer have been identified, including through production of reactive oxygen species (ROS). Oxidative damage to cellular macromolecules can arise through overproduction of ROS and faulty antioxidant and/or DNA repair mechanisms. In addition, ROS can stimulate signal transduction pathways and lead to activation of key transcription factors such as Nrf2 and NF-κB. The resultant altered gene expression patterns evoked by ROS contribute to the carcinogenesis process. Recent evidence demonstrates an association between a number of single nucleotide polymorphisms (SNPs) in oxidative DNA repair genes and antioxidant genes with human cancer susceptibility. These aspects of ROS biology will...
The Role of Oxidative Stress in Chemical Carcinogenesis
Environmental Health Perspectives, 1998
Oxidative stress results when the balance between the production of reactive oxygen species (ROS) overrides the antioxidant capability of the target cell; oxidative damage from the interaction of reactive oxygen with critical cellular macromolecules may occur. ROS may interact with and modify cellular protein, lipid, and DNA, which results in altered target cell function. The accumulation of oxidative damage has been implicated in both acute and chronic cell injury including possible participation in the formation of cancer. Acute oxidative injury may produce selective cell death and a compensatory increase in cell proliferation. This stimulus may result in the formation of newly initiated preneoplastic cells and/or enhance the selective clonal expansion of latent initiated preneoplastic cells. Similarly, sublethal acute oxidative injury may produce unrepaired DNA damage and result in the formation of new mutations and, potentially, new initiated cells. In contrast, sustained chronic oxidative injury may lead to a nonlethal modification of normal cellular growth control mechanisms. Cellular oxidative stress can modify intercellular communication, protein kinase activity, membrane structure and function, and gene expression, and result in modulation of cell growth. We examined the role of oxidative stress as a possible mechanism by which nongenotoxic carcinogens may function. In studies with the selective mouse liver carcinogen dieldrin, a species-specific and dose-dependent decrease in liver antioxidant concentrations with a concomitant increase in ROS formation and oxidative damage was seen. This increase in oxidative stress correlated with an increase in hepatocyte DNA synthesis. Antioxidant supplementation prevented the dieldrin-induced cellular changes. Our findings suggest that the effect of nongenotoxic carcinogens (if they function through oxidative mechanisms) may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS. These results and findings reported by others support a potential role for oxidative-induced injury in the cancer process specifically during the promotion stage.
Redox control of viral carcinogenesis: The human papillomavirus paradigm
Biochimica et biophysica acta, 2014
Cervical cancer is the second most common neoplastic disease among women worldwide. The initiating event of such cancer is the infection with certain types of human papillomavirus (HPV), a very common condition in the general population. However, the majority of HPV infections is subclinical and transitory and is resolved spontaneously. Intriguingly, viral oncogene expression, although necessary, is not per se sufficient to promote cervical cancer and other factors are involved in the progression of infected cells to the full neoplastic phenotype. In this perspective it has been suggested that the redox balance and the oxidative stress (OS) may represent interesting and under-explored candidates as promoting factors in HPV-initiated carcinogenesis. The current review discusses the possible interplay between the viral mechanisms modulating cell homeostasis and redox sensitive mechanisms. Experimental data and indirect evidences are presented on the activity of viral dependent functio...
Role of Oxidative Stress in Chemical Carcinogenesis
CRC Press eBooks, 2001
Oxidative stress results when the balance between the production of reactive oxygen species (ROS) overrides the antioxidant capability of the target cell; oxidative damage from the interaction of reactive oxygen with critical cellular macromolecules may occur. ROS may interact with and modify cellular protein, lipid, and DNA, which results in altered target cell function. The accumulation of oxidative damage has been implicated in both acute and chronic cell injury including possible participation in the formation of cancer. Acute oxidative injury may produce selective cell death and a compensatory increase in cell proliferation. This stimulus may result in the formation of newly initiated preneoplastic cells and/or enhance the selective clonal expansion of latent initiated preneoplastic cells. Similarly, sublethal acute oxidative injury may produce unrepaired DNA damage and result in the formation of new mutations and, potentially, new initiated cells. In contrast, sustained chronic oxidative injury may lead to a nonlethal modification of normal cellular growth control mechanisms. Cellular oxidative stress can modify intercellular communication, protein kinase activity, membrane structure and function, and gene expression, and result in modulation of cell growth. We examined the role of oxidative stress as a possible mechanism by which nongenotoxic carcinogens may function. In studies with the selective mouse liver carcinogen dieldrin, a species-specific and dose-dependent decrease in liver antioxidant concentrations with a concomitant increase in ROS formation and oxidative damage was seen. This increase in oxidative stress correlated with an increase in hepatocyte DNA synthesis. Antioxidant supplementation prevented the dieldrin-induced cellular changes. Our findings suggest that the effect of nongenotoxic carcinogens (if they function through oxidative mechanisms) may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS. These results and findings reported by others support a potential role for oxidative-induced injury in the cancer process specifically during the promotion stage.
Clinical …, 2005
Objectives: To evaluate the potential role of oxidative stress in the evolution of cervical cancer, including its pre-malignant states. Design and methods: Erythrocytes thiobarbituric acid reactive substances (TBARS) levels, plasma vitamin C and thiol content and total blood δ-ALA-D levels were estimated in 46 untreated cervical cancer and pre-malignant patients and in 46 age-sex-matched controls.