Structural Investigation of the HIV-1 Envelope Glycoprotein gp160 Cleavage Site, 2: Relevance of an N-Terminal Helix (original) (raw)

The selective proteolytic activation of the HIV-1 envelope glycoprotein gp160 by furin and other precursor convertases (PCs) occurs at the carboxyl side of the sequence Arg508-Glu-Lys-Arg511 (site 1), in spite of the presence of another consensus sequence: Lys500-Ala-Lys-Arg503 (site 2). We report on the solution structural analysis of a 19residue synthetic peptide, p498, which spans the two gp160-processing sites 1 and 2, and is properly digested by furin at site 1. A molecular model is obtained for p498, by means of molecular dynamics simulations, from NMR data collected in trifluoroethanol/water. The peptide N-terminal side presents a 9-residue helical segment, enclosing the processing site 2; the C-terminal segment can be described as a loop exposing the processing site 1. A hypothesis for the docking of p498 onto the catalytic domain of human furin, modeled by homology and fitting previous site-directed mutagenesis studies, is also presented. p498 site 1 is shown to have easy access to the furin catalytic site, unlike the nonphysiological site 2. Finally, on the basis of available data, we suggest a possible structural motif required for the gp160 ± PCs recognition.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact