Developing Conceptual Frameworks for the Recovery of Aquatic Biota from Acidification (original) (raw)

Assessing biological recovery of acid-sensitive lakes in Ontario, Canada

Water Air and Soil Pollution, 1995

lnfomaation on breeding waterfowl, habitat and food chains, gathered from acid-sensitive lakes in Ontario, was used to develop a model of effects of acid deposition on waterfowl and their response to predicted sulphur dioxide (SOz) emission reductions in eastem North America. The Waterfowl Acidification Response Modelling System (WARMS) is composed of an acidification model linked to fish and waterfowl models. WARMS uses pH, area, dissolved organic carbon, total phosphorus, and presence of fish to calculate estimates of pre-acidffication, present and eventual steady-state values for pH, fish presence and waterfowl breeding parameters under proposed SO 2 emission scenarios. We used WARMS to estimate chemical and biotic responses to scenarios simulated in three regions of Ontario where biomonitoring studies are underway. For ptl and fish presence, WARMS predicts the greatest improvements in the highly damaged Sudbury region, slight improvements in Algoma, and that the strongest proposed emission reductions will be required to maintain current conditions in Muskoka. For waterfowl, species-specific differences are evident among regions. We discuss implications of these assessments of biological recovery for watersheds in eastern Canada.

Assessing potential for recovery of biotic richness and indicator species due to changes in acidic deposition and lake pH in five areas of southeastern Canada

Environmental monitoring and assessment

Biological damage to sensitive aquatic ecosystems is among the most recognisable, deleterious effects of acidic deposition. We compiled a large spatial database of over 2000 waterbodies across southeastern Canada from various federal, provincial and academic sources. Data for zooplankton, fish, macroinvertebrate (benthos) and loon species richness and occurrence were used to construct statistical models for lakes with varying pH, dissolved organic carbon content and lake size. pH changes, as described and predicted using the Integrated Assessment Model (Lam et al., 1998; Jeffries et al., 2000), were based on the range of emission reductions set forth in the Canada/US Air Quality Agreement (AQA). The scenarios tested include 1983, 1990, 1994 and 2010 sulphate deposition levels. Biotic models were developed for five regions in southeastern Canada (Algoma, Muskoka, and Sudbury, Ontario, southcentral Quebec, and Kejimkujik, Nova Scotia) using regression tree, multiple linear regression ...

Aquatic Ecosystem Responses to Rapid Recovery from Extreme Acidification and Metal Contamination in Lakes Near Wawa, Ontario

Ecosystems, 2013

In the region northeast of Wawa, Ontario (Canada), many circumneutral lakes downwind of a nearby iron-sintering plant were strongly acidified (pH 3-4) in response to the emissions of large amounts of sulfur dioxide from 1939-1998. Following closure of the plant in 1998, lakewater pH has returned to circumneutral conditions due to the high buffering capacity of the local geological substrate. Prior paleolimnological analyses of dated sediment cores have detected some biological recovery among algal communities (diatoms and chrysophytes), although they have not returned to their pre-impact assemblages. Here we take a broader ecosystem approach, and build upon the algal analyses by examining cladoceran sedimentary assemblages, and spectrally-inferred chlorophyll a and dissolved organic carbon (DOC) from the same dated sediment cores. Similar to the algal communities, recent cladoceran sedimentary assemblages from three impacted lakes remain in an altered state relative to the pre-impact period (for example, increased relative abundances of Chydorus brevilabris and reduced cladoceran density in sediments). However, trends in the spectrally-inferred chlorophyll a and DOC were mixed, with long-term decreases in the study lake closest to the plant and long-term increases within the other lakes. Collectively, the multi-proxy paleolimnological analyses of these markedly acidified lakes demonstrate the delayed biological recovery from acidification (and differences in timing) across multiple trophic levels, despite the near-elimination of acid deposition almost a decade previously, which led to a striking recovery in lakewater pH and increased food availability.

The recovery of acid-damaged zooplankton communities in Canadian Lakes: the relative importance of abiotic, biotic and spatial variables

Freshwater Biology, 2012

1. Acidification has damaged biota in thousands of lakes and streams throughout eastern North America. Fortunately, reduced emissions of sulphur dioxide and nitrogen oxides beginning in the 1960s have allowed pH levels in many affected systems to increase. Determining the extent of biological and pH recovery in these systems is necessary to assess the success of emissions reductions programmes. 2. Although there have been promising signs of biological recovery in many systems, recovery has occurred more slowly than expected for some taxa. Past studies with crustacean zooplankton indicate that a mixture of local abiotic variables, biotic variables and dispersal processes may influence the structure of recovering communities. However, most studies have been unable to determine the relative importance of these three groups of variables. 3. We assessed chemical and biological recovery of acid-damaged lakes in Killarney Park, Ontario. In addition, we assessed the relative importance of local abiotic variables, biotic variables and dispersal processes for structuring recovering communities. We collected zooplankton community data, abiotic and biotic data from 45 Killarney Park lakes. To assess the recovery of zooplankton communities, we compared zooplankton data collected in 2005 to a survey conducted for the same lakes in 1972-73 using several univariate measures of community structure, as well as multivariate methods based on relative species abundances. To determine the factors influencing the structure of recovering zooplankton communities, we used hierarchical partitioning for univariate measures and spatial modelling and variation partitioning techniques for multivariate analyses. 4. Our survey revealed significant pH increases for the majority of sampled lakes but univariate measures of community structure, such as species richness and diversity, indicated that only minor changes have occurred in many acid-damaged lakes. Hierarchical partitioning identified several variables that may influence our univariate measures of recovery, including pH, dissolved organic carbon (DOC) levels, fish presence ⁄ absence, lake surface area and lake elevation. 5. Multivariate methods revealed a shift in communities through time towards a structure more typical of neutral lakes, providing some evidence for recovery. Variation partitioning suggested that the structure of recovering copepod communities was influenced most by dispersal processes and abiotic variables, while biotic (Chaoborus densities, fish presence ⁄ absence) and abiotic variables were more important for cladoceran zooplankton. 6. Our results indicate that the recovery of zooplankton communities in Killarney Park is not yet complete, despite decades of emission reductions. The importance of variables related to acidification, such as pH and DOC, indicates that further chemical recovery may be necessary. The

Recovery of Acidified Lakes: Lessons From Sudbury, Ontario, Canada

Water, Air, & Soil Pollution: Focus, 2007

Over 7,000 lakes around Sudbury, Ontario, Canada were acidified by S deposition associated with emissions from the Sudbury metal smelters and more distant S sources. Air pollution controls have led to widespread changes in damaged Sudbury lakes, including increased pH and decreased concentrations of SO 4 , metals and base cations. While chemical improvements have often been substantial, many lakes are still acidified, although water quality recovery is continuing. Biological recovery has been observed in some lakes among various groups of organisms including fish, zooplankton, phytoplankton and zoobenthos. Generally, however, biological recovery is still at an early stage. Lakes around Sudbury are also showing that the recovery of acid-damaged lakes is closely linked to the effects of other major environmental stressors such as climate change, base cation depletion and UV-B irradiance. Future studies of the recovery of acid-damaged lakes around Sudbury, and in other regions, will need to consider the interactions of these and other stressors.

Limnology in northeastern Ontario: from acidification to multiple stressors

Canadian Journal of Fisheries and Aquatic Sciences

Thousands of lakes around Sudbury, in northeastern Ontario, Canada, were badly damaged by acid deposition and many were also metal-contaminated. Large reductions in atmospheric sulphur and metal emissions have led to widespread chemical improvements in these lakes, and recovery has been documented for various biota. These findings were very important in establishing the necessity and value of sulphur emission controls during the international debates about the effects of acid deposition and the need for cleaner air. Studies of northeastern Ontario lakes are continuing to advance our understanding of chemical and biological recovery processes; however, that knowledge is still incomplete. It has become apparent that the recovery of lakes from acidification is closely linked with the responses to, and interactions with, other large-scale environmental stressors like climate change and calcium declines. Developing a better understanding of lake recovery processes and their future outcomes within such a multiple stressor context will be difficult. It will demand the merging of various approaches, including monitoring, experimentation, paleolimnology, and modelling, and will require effective collaboration among different research and monitoring sites and various agencies and institutions engaged in environmental science.

Relation of Lake Acidification and Recovery to Fish, Common Loon and Common Merganser Occurrence in Algoma Lakes

2002

Models are needed that predict both spatial and temporal improvements to ecosystems following reductions of acidifying emissions that produce 'acid rain'. Logistic regression models were developed for the occurrence of fish and two fish-eating birds, common loons (Gavia immer) and common mergansers (Mergus merganser), using monitoring data collected on lakes across Ontario. These models were applied in the Algoma region, including the Turkey Lakes Watershed (TLW). Using the Waterfowl Acidification Response Modeling System (WARMS), several SO 2 emission reduction scenarios were simulated, i.e. those contributing to measured 1982-1986 sulphate deposition levels, 1994 levels (corresponding to full implementation of Canadian SO 2 emission reductions as stipulated in the 1991 Canada/U.S. Air Quality Agreement), 2010 levels (1994 plus full U.S. reductions), and both a 50% and a 75% further reduction beyond 2010 levels. Some habitat improvements in Algoma were predicted under the 2010 scenario for all biota, but substantial increases in habitat quality, especially for mergansers, would occur only under further reductions. The TLW showed little change in chemistry or biota, while lakes near the Montreal River were predicted to improve substantially.

Use of littoral benthic invertebrates to assess factors affecting biological recovery of acid- and metal-damaged lakes

Journal of the North American Benthological Society, 2010

Biological recovery of aquatic ecosystems from acidification damage is a slow process. In lakes near the massive Cu and Ni smelters in Sudbury, Canada, the delays might be caused by residual metals, habitat damage, altered predator-prey interactions, or other persistent ecological stressors. Assessments of benthic invertebrate communities in 24 Sudbury lakes were conducted to evaluate the relative importance of these delaying factors. At the time of sampling, all lakes had chemically recovered to a pH .6.0, but they varied widely in the duration of time above this threshold and in current metal concentrations, watershed contributions of organic matter, littoral habitat composition, and fish community composition. A model developed with redundancy analyses (RDA) of 4 groups of environmental variables (i.e., water chemistry, fish communities, physical lake descriptors, and littoral habitat) accounted for 74.9% of the variance in benthic invertebrate community metrics across these environmental gradients. Fish species richness, duration of pH recovery, and % boulder habitat were the most significant variables and explained 22%, 9%, and 8% of the variance in benthic invertebrate community metrics, respectively. Damaged systems clearly need sufficient time to recover from severe disturbances. However, our study suggests that remediation techniques, such as manipulation of predator-prey interactions through fish introductions, might speed the recovery of benthic invertebrate communities.