The Association between Regular Cannabis Exposure and Alterations of Human Brain Morphology: An Updated Review of the Literature (original) (raw)

Spatiotemporal variations in vertical gravity gradients at the Campi Flegrei caldera (Italy): a case for source multiplicity during unrest

Geophysical Journal International, 2006

We present an evaluation of residual vertical gravity–height change gradients obtained from gravimetric and elevation data between 1982 and 2000 at the Campi Flegrei caldera (CFc) in Italy. Spatial and temporal variations in the gradients are indicative of multiple causative sources during unrest, in particular for ground subsidence from 1988 onwards. Supported by results obtained from time-series inversion for the period 1988–2000 using a random search approach of a purely elastic earth model and a genetic algorithm accounting for elastic-gravitational effects, we propose a centre of dilatation undergoing predominantly pressure changes yet negligible mass changes as the dominant cause for caldera deflation. Mass fluctuations in randomly active secondary sources along the periphery of the CFc can be best explained by dynamic changes along the caldera boundary (ring) faults.

Structural MRI Findings in Long-Term Cannabis Users: What Do We Know?

Substance Use & Misuse, 2010

In animal studies, tetrahydrocannabinol (THC) has been found to affect brain morphology, particularly within areas rich in cannabinoid receptors (e.g., hippocampus, cerebral cortex). While cannabis remains the most widely used illicit drug worldwide, there has been limited work investigating its effects on human brain tissue. In this paper, we conducted a systematic review of existing structural magnetic resonance imaging studies to examine whether cannabis use is associated with significant changes in brain anatomy. We identified only 13 structural neuroimaging studies, which were diverse in terms of sample characteristics (e.g., age of participants, duration and frequency of use) and methodology (e.g., image analysis). No study found global structural changes in cannabis users, although six studies reported regional alterations. While changes in the hippocampus and parahippocampus were frequently identified, the findings were inconsistent across studies. The available literature also provides some evidence that regional structural changes are associated with cannabis use patterns (particularly cumulative dosage and frequency of use), as well as measures of psychopathology (e.g., measures of depressive and psychotic symptoms). Together, these structural imaging findings suggest that THC exposure does affect brain morphology, especially in medial-temporal regions. Given the small literature available and the limitations of studies to date, further research is clearly required, particularly given the prevalence of cannabis use worldwide.

Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models

Cannabis is one of the most widely used illicit drugs among adolescents, and most users first experiment with it in adolescence. Adolescence is a critical phase for brain development, characterized by neuronal maturation and rearrangement processes, such as myelination, synaptic pruning and dendritic plasticity. The endocannabinoid system plays an important role in fundamental brain developmental processes such as neuronal cell proliferation, migration and differentiation. Therefore changes in endocannabinoid activity during this specific developmental phase, induced by the psychoactive component of marijuana, D 9 -tetrahydrocannabinol, might lead to subtle but lasting neurobiological changes that can affect brain functions and behaviour. In this review, we outline recent research into the endocannabinoid system focusing on the relationships between adolescent exposure to cannabinoids and increased risk for certain neuropsychiatric diseases such as schizophrenia, as highlighted by both human and animal studies. Particular emphasis will be given to the possible mechanisms by which adolescent cannabis consumption could render a person more susceptible to developing psychoses such as schizophrenia. Adolescent cannabis use and psychosis 512 DT Malone et al British Journal of Pharmacology (2010) 160 511-522 Adolescent cannabis use and psychosis DT Malone et al 513 British Journal of Pharmacology (2010) 160 511-522 Adolescent cannabis use and psychosis DT Malone et al 519 British Journal of Pharmacology (2010) 160 511-522 Adolescent cannabis use and psychosis 522 DT Malone et al British Journal of Pharmacology (2010) 160 511-522

THEMED ISSUE: CANNABINOIDS REVIEW Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental modelsb ph_721 511..522

Cannabis is one of the most widely used illicit drugs among adolescents, and most users first experiment with it in adolescence. Adolescence is a critical phase for brain development, characterized by neuronal maturation and rearrangement processes, such as myelination, synaptic pruning and dendritic plasticity. The endocannabinoid system plays an important role in fundamental brain developmental processes such as neuronal cell proliferation, migration and differentiation. Therefore changes in endocannabinoid activity during this specific developmental phase, induced by the psychoactive component of marijuana, D 9-tetrahydrocannabinol, might lead to subtle but lasting neurobiological changes that can affect brain functions and behaviour. In this review, we outline recent research into the endocannabinoid system focusing on the relationships between adolescent exposure to cannabinoids and increased risk for certain neuropsychiatric diseases such as schizophrenia, as highlighted by both human and animal studies. Particular emphasis will be given to the possible mechanisms by which adolescent cannabis consumption could render a person more susceptible to developing psychoses such as schizophrenia.

Long-term effects of marijuana use on the brain

Proceedings of the National Academy of Sciences of the United States of America, 2014

Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchrony among abnormal GM regions during resting state via functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 62 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor) as measured by fractional anisotropy (FA). Increased OFC function...

The effect of cannabis use on memory function: an update

Substance Abuse and Rehabilitation, 2013

Investigating the effects of cannabis use on memory function appears challenging. While early observational investigations aimed to elucidate the longer-term effects of cannabis use on memory function in humans, findings remained equivocal and pointed to a pattern of interacting factors impacting on the relationship between cannabis use and memory function, rather than a simple direct effect of cannabis. Only recently, a clearer picture of the chronic and acute effects of cannabis use on memory function has emerged once studies have controlled for potential confounding factors and started to investigate the acute effects of delta-9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), the main ingredients in the extract of the cannabis plant in pharmacological challenge experiments. Relatively consistent findings have been reported regarding the acute impairments induced by a single dose of ∆9-THC on verbal and working memory. It is unclear whether they may persist beyond the intoxication state. In the long-term, these impairments seem particularly likely to manifest and may also persist following abstinence if regular and heavy use of cannabis strains high in ∆9-THC is started at an early age. Although still at an early stage, studies that employed advanced neuroimaging techniques have started to model the neural underpinnings of the effects of cannabis use and implicate a network of functional and morphological alterations that may moderate the effects of cannabis on memory function. Future experimental and epidemiological studies that take into consideration individual differences, particularly previous cannabis history and demographic characteristics, but also the precise mixture of the ingredients of the consumed cannabis are necessary to clarify the magnitude and the mechanisms by which cannabis-induced memory impairments occur and to elucidate underlying neurobiological mechanisms.

Effects of Cannabis Use on Human Brain Structure in Psychosis: A Systematic Review Combining In Vivo Structural Neuroimaging and Post Mortem Studies

2012

It is unclear yet whether cannabis use is a moderating or causal factor contributing to grey matter alterations in schizophrenia and the development of psychotic symptoms. We therefore systematically reviewed structural brain imaging and post mortem studies addressing the effects of cannabis use on brain structure in psychosis. Studies with schizophrenia (SCZ) and first episode psychosis (FEP) patients as well as individuals at genetic (GHR) or clinical high risk for psychosis (ARMS) were included. We identified 15 structural magnetic resonance imaging (MRI) (12 cross sectional / 3 longitudinal) and 4 post mortem studies. The total number of subjects encompassed 601 schizophrenia or first episode psychosis patients, 255 individuals at clinical or genetic high risk for psychosis and 397 healthy controls. We found evidence for consistent brain structural abnormalities in cannabinoid 1 (CB1) receptor enhanced brain areas as the cingulate and prefrontal cortices and the cerebellum. As these effects have not consistently been reported in studies examining nonpsychotic and healthy samples, psychosis patients and subjects at risk for psychosis might be particularly vulnerable to brain volume loss due to cannabis exposure.

The chronic effects of cannabis on memory in humans: a review

Memory problems are frequently associated with cannabis use, in both the short- and long-term. To date, reviews on the long-term cognitive sequelae of cannabis use have examined a broad range of cognitive functions, with none specifically focused on memory. Consequently, this review sought to examine the literature specific to memory function in cannabis users in the nontoxicated state with the aim of identifying the existence and nature of memory impairment in cannabis users and appraising potentially related mediators or moderators. Literature searches were conducted to extract well-controlled studies that investigated memory function in cannabis users outside of the acute intoxication period, with a focus on reviewing studies published within the past 10 years. Most recent studies have examined working memory and verbal episodic memory and cumulatively, the evidence suggests impaired encoding, storage, manipulation and retrieval mechanisms in long-term or heavy cannabis users. These impairments are not dissimilar to those associated with acute intoxication and have been related to the duration, frequency, dose and age of onset of cannabis use. We consider the impact of not only specific parameters of cannabis use in the manifestation of memory dysfunction, but also such factors as age, neurodevelopmental stage, IQ, gender, various vulnerabilities and other substance-use interactions, in the context of neural efficiency and compensatory mechanisms. The precise nature of memory deficits in cannabis users, their neural substrates and manifestation requires much further exploration through a variety of behavioural, functional brain imaging, prospective and genetic studies.

Effects of Cannabis on Impulsivity: A Systematic Review of Neuroimaging Findings

We conducted a systematic review to assess the evidence for specific effects of cannabis on impulsivity, disinhibition and motor control. The review had a specific focus on neuroimaging findings associated with acute and chronic use of the drug and covers literature published up until May 2012. Seventeen studies were identified, of which 13 met the inclusion criteria; three studies investigated acute effects of cannabis (1 fMRI, 2 PET), while six studies investigated non-acute functional effects (4 fMRI, 2 PET), and four studies investigated structural alterations. Functional imaging studies of impulsivity studies suggest that prefrontal blood flow is lower in chronic cannabis users than in controls. Studies of acute administration of THC or marijuana report increased brain metabolism in several brain regions during impulsivity tasks. Structural imaging studies of cannabis users found differences in reduced prefrontal volumes and white matter integrity that might mediate the abnormal impulsivity and mood observed in marijuana users. To address the question whether impulsivity as a trait precedes cannabis consumption or whether cannabis aggravates impulsivity and discontinuation of usage more longitudinal study designs are warranted.