Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence (original) (raw)

Abstract

Assessing the extent to which population subdivision during cladogenesis is necessary for long-term phenotypic evolution is of fundamental importance in a broad range of biological disciplines. Differentiating cladogenesis from anagenesis, defined as evolution within a species, has generally been hampered by dating precision, insufficient fossil data, and difficulties in establishing a direct link between morphological changes detectable in the fossil record and biological species. Here we quantify the relative frequencies of cladogenesis and anagenesis for macroperforate planktic Foraminifera, which arguably have the most complete fossil record currently available, to address this question. Analyzing this record in light of molecular evidence, while taking into account the precision of fossil dating techniques, we estimate that the fraction of speciation events attributable to anagenesis is <19% during the Cenozoic era (last 65 Myr) and <10% during the Neogene period (last 23 Myr). Our central conclusion-that cladogenesis is the predominant mode by which new planktic Foraminifera taxa become established at macroevolutionary time scales-differs markedly from the conclusion reached in a recent study based solely on fossil data. These disparate findings demonstrate that interpretations of macroevolutionary dynamics in the fossil record can be fundamentally altered in light of genetic evidence. punctuated equilibrium | phyletic gradualism | lineage | morphospecies B iological evolution proceeds through two distinct modes: anagenesis, which occurs within a species, and cladogenesis, which occurs during speciation and results in the subdivision of a species into two reproductively isolated, independently evolving taxa (1, 2). Distinguishing between these modes is essential to determining the role of population subdivision in evolutionary dynamics . This topic has received considerable attention in paleontology (1, 2), perhaps because the fossil record provides the only direct record of long-term morphological change (5), but its importance extends to other biological disciplines. For example, in population genetics, models only predict that phenotypic change is contingent upon or associated with the evolution of reproductive isolation under specific circumstances (3). Thus, a primary role for cladogenesis may highlight the importance of particular speciation modes (2), metapopulations dynamics , or adaptive peaks in fitness landscapes (7, 8). In community ecology, both evolutionary modes may influence biodiversity, but the mechanisms differ: only cladogenesis results in an increase in diversity (9-11), but anagenesis may help maintain diversity if it results in niche differences that facilitate species coexistence (12, 13).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (69)

  1. Simpson GG (1953) The Major Features of Evolution (Columbia Univ Press, New York).
  2. Eldredge N, Gould SJ (1972) Models in Paleobiology, ed Schopf TJM (Freman, Cooper & Co., San Francisco), pp 82-115.
  3. Futuyma DJ (1987) On the role of species in anagenesis. Am Nat 130(3):465-473.
  4. Venditti C, Pagel M (2010) Speciation as an active force in promoting genetic evo- lution. Trends Ecol Evol 25(1):14-20.
  5. Jackson JBC, Cheetham AH (1999) Tempo and mode of speciation in the sea. Trends Ecol Evol 14(2):72-77.
  6. Eldredge N, et al. (2005) The dynamics of evolutionary stasis. Paleobiology 31(Suppl 2):133-145.
  7. Estes S, Arnold SJ (2007) Resolving the paradox of stasis: Models with stabilizing se- lection explain evolutionary divergence on all timescales. Am Nat 169(2):227-244.
  8. Lande R (1986) The dynamics of peak shifts and the pattern of morphological evo- lution. Paleobiology 12(4):343-354.
  9. Hubbell SP (2001) A Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ Press, Princeton, NJ).
  10. Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9(8):947-954.
  11. Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci USA 103(24): 9130-9135.
  12. MacArthur RH (1972) Geographical Ecology: Patterns in the Distribution of Species (Harper & Row, New York).
  13. Alizon S, Kucera M, Jansen VAA (2008) Competition between cryptic species explains variations in rates of lineage evolution. Proc Natl Acad Sci USA 105(34):12382-12386.
  14. Wagner PJ, Erwin DH (1995) New Approaches for Studying Speciation in the Fossil Record, eds Erwin DH, Anstey RL (Columbia Univ Press, New York), pp 87-122.
  15. Stuessy TF, et al. (2006) Anagenetic evolution in island plants. J Biogeogr 33(7): 1259-1265.
  16. Hallam A (1997) Speciation patterns and trends in the fossil record. Geobios 30(7): 921-930.
  17. Eldredge N (1995) New Approaches for Studying Speciation in the Fossil Record, eds Erwin DH, Anstey RL (Columbia Univ Press, New York), pp 39-63.
  18. Langer MR (2008) Assessing the contribution of foraminiferan protists to global ocean carbonate production. J Eukaryot Microbiol 55(3):163-169.
  19. Malmgren BA, Berggren WA, Lohmann GP (1983) Evidence for punctuated gradual- ism in the late neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9(4):377-389.
  20. Tabachnick RE, Bookstein FL (1990) The structure of individual variation in Miocene globorotalia. Evolution 44(2):416-434.
  21. Hull PM, Norris RD (2009) Evidence for abrupt speciation in a classic case of gradual evolution. Proc Natl Acad Sci USA 106(50):21224-21229.
  22. Norris RD, Corfield RM, Cartlidge J (1996) What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology 22(3):386-405.
  23. Norris RD (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology 26(4):236-258.
  24. Aze T, et al. (2011) A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol Rev Camb Philos Soc 86(4):900-927.
  25. Berggren WA, Kent DV, Swisher CC III, Aubry MP (1995) A revised Cenozoic geo- chronology and chronostratigraphy. Society for Sedimentary Geology Special Publi- cation 54:129-212.
  26. Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene plank- tonic foraminiferal zonation. J Foraminiferal Res 35(4):279-298.
  27. Wade BS, Pearson PN, Berggren WA, Pälike H (2011) Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci Rev 104(1-3):111-142.
  28. de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J (1999) Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA 96(6):2864-2868.
  29. Darling KF, et al. (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405(6782):43-47.
  30. Darling KF, Wade CM (2008) The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol 67(3-4): 216-238.
  31. Quillévéré F, et al. (2012) Global scale same-specimen morpho-genetic analysis of Truncorotalia truncatulinoides: A perspective on the morphological species concept in planktonic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol, 10.1016/j.palaeo. 2011.03.013.
  32. Ezard THG, Pearson PN, Aze T, Purvis A (2012) The meaning of birth and death (in macroevolutionary birth-death models). Biol Lett 8(1):139-142.
  33. de Vargas C, Zaninetti L, Hilbrecht H, Pawlowski J (1997) Phylogeny and rates of molecular evolution of planktonic foraminifera: SSU rDNA sequences compared to the fossil record. J Mol Evol 45(3):285-294.
  34. Stewart IA, Darling KF, Kroon D, Wade CM, Troelstra SR (2001) Genotypic variability in subarctic Atlantic planktic foraminifera. Mar Micropaleontol 43(1-2):143-153.
  35. Aurahs R, Grimm GW, Hemleben V, Hemleben C, Kucera M (2009) Geographical distribution of cryptic genetic types in the planktonic foraminifer Globigerinoides ruber. Mol Ecol 18(8):1692-1706.
  36. Aurahs R, et al. (2009) Using the multiple analysis approach to reconstruct phyloge- netic relationships among planktonic foraminifera from highly divergent and length- polymorphic SSU rDNA sequences. Bioinform Biol Insights 3:155-177.
  37. Pearson PN (1993) A lineage phylogeny for the Paleogene Planktonic Foraminifera. Micropaleontology 39(3):193-232.
  38. Stewart DRM, Pearson PN (2000) PLANKRANGE: a database of planktonic forami- niferal ranges. Available at http://palaeoglybrisacuk/Data/plankrangehtml. (Last up- date: 12/1/2002). Accessed May 10, 2012.
  39. Bebber DP, Marriott FHC, Gaston KJ, Harris SA, Scotland RW (2007) Predicting un- known species numbers using discovery curves. Proc Biol Sci 274(1618):1651-1658.
  40. Olsson RK, Hemleben C, Berggren WA, Huber BT (1999) Atlas of Paleocene planktonic Foraminifera. Smithsonian Contributions to Paleobiology (Smithsonian Institution Press, Washington).
  41. Pearson PN, Olsson RK, Huber BT, Hemleben C, Berggren WA (2006) Atlas of Eocene planktonic foraminifera. Cushman Foundation for Foraminiferal Research Special Publication (Cushman Foundation for Foraminiferal Research, Washington, DC).
  42. Huber BT, Bijma J, Darling K (1997) Cryptic speciation in the living planktonic fora- minifer Globigerinella siphonifera (d'Orbigny). Paleobiology 23(1):33-62.
  43. Morard R, et al. (2009) Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Mar Micropaleontol 71(3-4):148-165.
  44. Pol D, Norell MA (2006) Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Syst Biol 55(3):512-521.
  45. Hilgen FJ, et al. (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet Sci Lett 136(3-4):495-510.
  46. Raffi I, et al. (2006) A review of calcareous nannofossil astrobiochronology encom- passing the past 25 million years. Quat Sci Rev 25(23-24):3113-3137.
  47. Scott GH (2011) Holotypes in the taxonomy of planktonic foraminiferal morphospe- cies. Mar Micropaleontol 78(3-4):96-100.
  48. Wei K-Y (1987) Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineage Globoconella. Mar Micropaleontol 12: 183-202.
  49. Aurahs R, Treis Y, Darling K, Kucera M (2011) A revised taxonomic and phylogenetic concept for the planktonic foraminifer species Globigerinoides ruber based on mo- lecular and morphometric evidence. Mar Micropaleontol 79(1-2):1-14.
  50. Wei K-Y, Kennett JP (1988) Phyletic gradualism and punctuated equilibrium in the Late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14(4): 345-363.
  51. Cody RD, Levy RH, Harwood DM, Sadler PM (2008) Thinking outside the zone: High- resolution quantitative diatom biochronology for the Antarctic Neogene. Palae- ogeogr Palaeoclimatol Palaeoecol 260:92-121.
  52. Corfield RM, Granlund AH (1988) Speciation and structural evolution in the Palae- ocene Morozovella lineage (planktonic Foraminiferida). J Micropalaeontology 7(1): 59-72.
  53. Healy-Williams N, Ehrlich R, Williams DF (1985) Morphometric and stable isotopic evidence for subpopulations of Globorotalia truncatulinoides. J Foraminiferal Res 15(4):242-253.
  54. de Vargas C, Renaud S, Hilbrecht H, Pawlowski J (2001) Pleistocene adaptive radiation in Globorotalia truncatulinoides: Genetic, morphologic, and environmental evidence. Paleobiology 27(1):104-125.
  55. Quillévéré F, Norris RD, Berggren WA, Aubry M-P (2000) 59.2 Ma and 56.5 Ma: Two significant moments in the evolution of acarininids (planktonic foraminifera). GFF 122(1):131-132.
  56. Soldan DM, Petrizzo MR, Silva IP, Cau A (2011) Phylogenetic relationships and evo- lutionary history of the Paleogene genus Igorina through parsimony analysis. J Fo- raminiferal Res 41(3):260-284.
  57. Malmgren BA, Ku cera M, Ekman G (1996) Evolutionary changes in supplementary apertural characteristics of the late Neogene Sphaeroidinella dehiscens lineage (planktonic foraminifera). Palaios 11(2):192-206.
  58. Kucera M (1998) Biochronology of the mid-Pliocene Sphaeroidinella event. Mar Mi- cropaleontol 35(1):1-16.
  59. Lazarus D, Hilbrecht H, Spencer-Cervato C, Thierstein H (1995) Sympatric speciation and phyletic change in Globorotalia truncatulinoides. Paleobiology 21(1):28-51.
  60. Hunt G (2008) Gradual or pulsed evolution: When should punctuational explanations be preferred? Paleobiology 34(3):360-377.
  61. Pearson PN (1996) Cladogenetic, extinction and survivorship patterns from a lineage phylogeny: The Paleogene planktonic foraminifera. Micropaleontology 42(2): 179-188.
  62. Malmgren BA, Kennett JP (1977) Biometric differentiation between recent Globi- gerina bulloides and Globigerina falconensis in the southern Indian Ocean. J Fora- miniferal Res 7(2):130-148.
  63. Hemleben C, Spindler M, Andersen OR (1989) Modern Planktonic Foraminifera (Springer, New York).
  64. Pearson PN, et al. (2004) Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1--5. J Afr Earth Sci 39:25-62.
  65. Kemle-von Mücke S, Hemleben C (1999) South Atlantic Zooplankton, ed Boltovskoy D (Backhuys Publishers, Leiden, The Netherlands), pp 43-73.
  66. Eguchi NO, Ujiie H, Kawahata H, Taira A (2003) Seasonal variations in planktonic foraminifera at three sediment traps in the subarctic, transition and subtropical zones of the central North Pacific Ocean. Mar Micropaleontol 48(1-2):149-163.
  67. Boltovskoy E, Watanabe S (1986) Quaternary stratigraphy of two cores off the coast of Peru. Quaternary of South America and Antarctic peninsula 4:27-44.
  68. Darling KF, Kucera M, Kroon D, Wade CM (2006) A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 21(2):PA2011.
  69. Darling KF, Kucera M, Pudsey CJ, Wade CM (2004) Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Natl Acad Sci USA 101(20):7657-7662.