Compiling a Molecular Inventory for Mycobacterium bovis BCG at Two Growth Rates: Evidence for Growth Rate-Mediated Regulation of Ribosome Biosynthesis and Lipid Metabolism (original) (raw)

Abstract

An experimental system of Mycobacterium tuberculosis growth in a carbon-limited chemostat has been established by the use of Mycobacterium bovis BCG as a model organism. For this model, carbon-limited chemostats with low concentrations of glycerol were used to simulate possible growth rates during different stages of tuberculosis. A doubling time of 23 h (D ‫؍‬ 0.03 h ؊1 ) was adopted to represent cells during the acute phase of infection, whereas a lower dilution rate equivalent to a doubling time of 69 h (D ‫؍‬ 0.01 h ؊1 ) was used to model mycobacterial persistence. This chemostat model allowed the specific response of the mycobacterial cell to carbon limitation at different growth rates to be elucidated. The macromolecular (RNA, DNA, carbohydrate, and lipid) and elemental (C, H, and N) compositions of the biomass were determined for steady-state cultures, revealing that carbohydrates and lipids comprised more than half of the dry mass of the BCG cell, with only a quarter of the dry weight consisting of protein and RNA. Consistent with studies of other bacteria, the specific growth rate impacts on the macromolecular content of BCG and the proportions of lipid, RNA, and protein increased significantly with the growth rate. The correlation of RNA content with the growth rate indicates that ribosome production in carbon-limited M. bovis BCG cells is subject to growth rate-dependent control. The results also clearly show that the proportion of lipids in the mycobacterial cell is very sensitive to changes in the growth rate, probably reflecting changes in the amounts of storage lipids. Finally, this study demonstrates the utility of the chemostat model of mycobacterial growth for functional genomic, physiology, and systems biology studies. Small aliquots of seed stocks were maintained in 10% (vol/vol) glycerol at Ϫ80°C.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (68)

  1. Abramowsky, C., B. Gonzalez, and R. U. Sorensen. 1993. Disseminated bacillus Calmette-Guerin infections in patients with primary immunodefi- ciencies. Am. J. Clin. Pathol. 100:52-56.
  2. Andersen, P., D. Askgaard, L. Ljungqvist, J. Bennedsen, and I. Heron. 1991. Proteins released from Mycobacterium tuberculosis during growth. Infect. Immun. 59:1905-1910.
  3. Bacon, J., B. W. James, L. Wernisch, A. Williams, K. A. Morley, G. J. Hatch, J. A. Mangan, J. Hinds, N. G. Stoker, P. D. Butcher, and P. D. Marsh. 2004. The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis 84:205-217.
  4. Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoolnik, S. Rane, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole- genome DNA microarray. Science 284:1520-1523.
  5. Betts, J. C., P. T. Lukey, L. C. Robb, R. A. McAdam, and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43: 717-731.
  6. Bremer, H., and P. P. Dennis. 1996. Modulation of chemical composition and other parameters of the cell growth rate, p. 1553-1569. In F. C. Nied- hardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Esch- erichia coli and Salmonella: cellular and molecular biology, 2nd ed. American Society for Microbiology, Washington, D.C.
  7. Chandramouli, V., and T. A. Venkitasubramanian. 1982. Effect of age on the lipids of mycobacteria. Indian J. Chest Dis. Allied Sci. 16:199-207.
  8. Churchward, G., H. Bremer, and R. Young. 1982. Macromolecular compo- sition of bacteria. J. Theor. Biol. 94:651-670.
  9. Cole, S. T., R. Brosch, T. Parkhill, T. Garnier, D. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry, F. Tekaia, K. Badcock, and D. Basham. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544.
  10. Colston, M. J., and R. A. Cox. 1999. Mycobacterial growth and dormancy, p. 198-219. In C. Ratledge and J. Dale (ed.), Mycobacteria: molecular biology and virulence. Blackwell Science, London, United Kingdom.
  11. Cox, R. A. 2003. Correlation of the rate of protein synthesis and the third power of the RNA:protein ratio in Escherichia coli and Mycobacterium tu- berculosis. Microbiology 149:729-737.
  12. Cox, R. A. 2004. Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 150:1413-1426.
  13. Daniels, L., R. S. Hanson, and J. A. Phillips. 1994. Chemical analysis, p. 512-555. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C.
  14. Dauner, M., and U. Sauer. 2001. Stoichiometric growth model for riboflavin- producing Bacillus subtilis. Biotechnol. Bioeng. 76:132-143.
  15. Dennis, P. P., and H. Bremer. 1974. Macromolecular composition during steady-state growth of Escherichia coli B-r. J. Bacteriol. 119:270-281.
  16. Dietrich, G., H. J. Mollenkopf, H. Weber, B. Knapp, K. D. Diehl, J. Hess, F. Blackkolb, M. Broker, S. H. Kaufmann, and E. Hundt. 2002. Cultivation of Mycobacterium bovis BCG in bioreactors. J. Biotechnol. 96:259-270.
  17. Dubois, M., K. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350-356.
  18. Fischer, E., and U. Sauer. 2003. A novel metabolic cycle catalyses glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278: 46446-46451.
  19. Fritz, C., S. Maass, A. Kreft, and F. C. Bange. 2002. Dependence of Myco- bacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect. Immun. 70:286-291.
  20. Garcia-Vallve, S., E. Guzman, M. A. Montero, and A. Romeu. 2003. HGT- DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31:187-189.
  21. Hampshire, T., S. Soneji, J. Bacon, B. W. James, J. Hinds, K. Laing, R. A. Stabler, P. D. Marsh, and P. D. Butcher. 2004. Stationary phase gene ex- pression of Mycobacterium tuberculosis following a progressive nutrient de- pletion: a model for persistent organisms? Tuberculosis 84:228-238.
  22. Herbert, D., R. Elsworth, and R. C. Telling. 1956. The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol. 14:622.
  23. Hiriyanna, K. T., and T. Ramakrishnan. 1986. Deoxyribonucleic acid repli- cation time in Mycobacterium tuberculosis H37 Rv. Arch. Microbiol. 144:105- 109.
  24. Hua, Q., C. Yang, T. Oshima, H. Mori, and K. Shimizu. 2004. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70:2354-2366.
  25. Hutter, B., and T. Dick. 2000. Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol. Lett. 188:141-146.
  26. Jackson, M., S. W. Phalen, M. Lagranderie, D. Ensergueix, P. Chavarot, G. Marchal, D. N. McMurray, B. Gicquel, and C. Guilhot. 1999. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect. Immun. 67:2867-2873.
  27. James, B. W., A. Williams, and P. D. Marsh. 2000. The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled condi- tions in a defined medium. J. Appl. Microbiol. 88:669-677.
  28. Kovarova, K., and T. Egli. 1998. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62:646-666.
  29. Lim, A., M. Eleuterio, B. Hutter, O. Murugasu, and T. Dick. 1999. Oxygen depletion-induced dormancy in Mycobacterium bovis BCG. J. Bacteriol. 181: 2252-2256.
  30. Lowrie, D. B., V. R. Aber, and P. S. Jackett. 1979. Phagosome-lysosome fusion and cyclic adenosine 3Ј:5Ј-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J. Gen. Microbiol. 110:431-441.
  31. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-276.
  32. Lynch, H. C., and M. E. Bushell. 1995. The physiology of erythromycin biosynthesis in cyclic fed batch culture. Microbiology 141:3105-3111.
  33. Mackay, A., T. Macleod, M. J. Alcorn, M. Laidlaw, I. M. Macleod, J. S. Millar, B. H. Stack, and R. G. White. 1980. Fatal disseminated BCG infec- tion in an 18-year-old boy. Lancet 2:1332-1334.
  34. Mattow, J., P. R. Jungblut, U. E. Schaible, H. J. Mollenkopf, S. Lamer, A. Zimny, K. Hagens, E. C. Muller, and S. H. Kaufmann. 2001. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobac- terium bovis BCG strains. Electrophoresis 22:2936-2946.
  35. McCarthy, C. M. 1983. Continuous culture of Mycobacterium avium limited for ammonia. Am. Rev. Respir. Dis. 127:193-197.
  36. McCarthy, C. M., M. A. Taylor, and M. W. Dennis. 1987. Maximum growth VOL. 187, 2005 MACROMOLECULAR COMPOSITION OF M. BOVIS BCG 1683 rate of Mycobacterium avium in continuous culture or chronically infected BALB/c mice. Microbios 52:97-103.
  37. McKinney, J. D., Z. Honer, E. Munoz, A. Miczak, B. Chen, W. T. Chan, D. Swenson, J. C. Sacchettini, W. R. Jacobs, and D. G. Russell. 2000. Persis- tence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735-738.
  38. Merchand, J. A., M. J. Colston, and R. A. Cox. 1998. Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J. Bacteriol. 180:5756-5761.
  39. Monod, J. 1950. La technique de culture continue; theorie et applications. Ann. Inst. Pasteur 79:390-410.
  40. Murugasu-Oei, B., and T. Dick. 2000. Bacteriocidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J. Antimicrob. Chemother. 46:917-919.
  41. Ninane, J., A. Grymonprez, G. Burtonboy, A. Francois, and G. Cornu. 1988. Disseminated BCG in HIV infection. Arch. Dis. Child 63:1268-1269.
  42. Nyabenda, J., E. Bautens, M. Borremans, R. Verhofstadt, M. Weckx, and A. Marchal. 1988. The production of mycobacterial antigens by homogeneous culture in a fermenter. J. Biol. Stand. 16:259-267.
  43. Passwell, J., D. Katz, Y. Frank, Z. Spirer, B. E. Cohen, and M. Ziprkowski. 1976. Fatal disseminated BCG infection. An investigation of the immuno- deficiency. Am. J. Dis. Child 130:433-436.
  44. Ratledge, C. 1982. Lipids: cell composition, fatty acids biosynthesis, p. 53-93.
  45. In C. Ratledge and J. L. Stanford (ed.), The biology of the mycobacteria, vol.
  46. Rosenfeldt, V., A. Paerregaard, and N. H. Valerius. 1997. Disseminated infection with bacillus Calmette-Guerin in a child with advanced HIV dis- ease. Scand. J. Infect. Dis. 29:526-527.
  47. Rosset, R., J. Julien, and R. Monier. 1966. Ribonucleic acid composition of bacteria as a function of growth rate. J. Mol. Biol. 18:308-320.
  48. Sambandamurthy, V. K., X. J. Wang, B. Chen, R. G. Russell, S. Derrick, F. M. Collins, S. L. Morris, and W. R. Jacobs. 2002. A pantothenate auxo- troph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8:1171-1174.
  49. Sanford, K., P. Soucaille, G. Whited, and G. Chotani. 2002. Genomics to fluxomics and physiomics-pathway engineering. Curr. Opin. Microbiol. 5:318-322.
  50. Schaeter, M., O. Maaloe, and N. O. Kjeldgaard. 1958. Dependency on medium and temperature of cell size and chemical composition during bal- anced growth of Salmonella typhimurium. J. Gen. Microbiol. 19:592-606.
  51. Schnappinger, D., S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G. Dolganov, B. Efron, P. D. Butcher, C. Nathan, and G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:693-704.
  52. Segal, W., and H. Bloch. 1956. Biochemical differentiation of Mycobacterium tuberculosis in vivo and in vitro. J. Bacteriol. 72:132-141.
  53. Shi, L., Y. J. Jung, S. Tyagi, M. L. Gennaro, and R. J. North. 2003. Expres- sion of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl. Acad. Sci. USA 100:241-246.
  54. Skjold, A. C., H. Juarez, and C. Hedgcoth. 1973. Relationships among de- oxyribonucleic acid, ribonucleic acid, and specific transfer ribonucleic acids in Escherichia coli 15T at various growth rates. J. Bacteriol. 115:177-187.
  55. Stewart, G. R., L. Wernisch, R. Stabler, J. A. Mangan, J. Hinds, K. G. Laing, D. B. Young, and P. D. Butcher. 2002. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129-3138.
  56. Sykes, J., and T. W. Young. 1968. Studies on the ribosomes and ribonucleic acids of Aerobacter aerogenes grown at different rates in carbon-limited con- tinuous culture. Biochim. Biophys. Acta 169:103-116.
  57. Talbot, E. A., M. D. Perkins, S. F. Silva, and R. Frothingham. 1997. Dis- seminated bacille Calmette-Guerin disease after vaccination: case report and review. Clin. Infect. Dis. 24:1139-1146.
  58. Verma, A., A. K. Sampla, and J. S. Tyagi. 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J. Bac- teriol. 181:4326-4333.
  59. Wayne, L. G., and L. G. Hayes. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonrepli- cating persistence. Infect. Immun. 64:2062-2069.
  60. Wheeler, P. R., and C. Ratledge. 1988. Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. J. Gen. Microbiol. 134:2111-2121.
  61. Winder, F. G., and M. P. Coughlan. 1967. The relationship between iron deficiency, deoxyribonucleic acid content and ribonucleoside triphosphate- dependent breakdown of deoxyribonucleic acid Mycobacterium smegmatis. Biochem. J. 103:67.
  62. Winder, F. G., and M. P. Coughlan. 1971. Comparison of the effects of carbon, nitrogen and iron limitation on the growth and on the RNA and DNA content of Mycobacterium smegmatis. Ir. J. Med. Sci. 140:16-25.
  63. Winder, F. G., and J. M. Denney. 1956. Phosphorous metabolism of myco- bacteria: determination of phosphorous compounds in some mycobacteria. J. Gen. Microbiol. 15:1-18.
  64. Winder, F. G., and S. A. Rooney. 1968. The effect of isoniazid on the alkali-extractable polysaccharides of Mycobacterium tuberculosis. Biochem. J. 110:385-393.
  65. Winder, F. G., and S. A. Rooney. 1970. Effects of nitrogenous components of the medium on the carbohydrate and nucleic acid content of Mycobacterium tuberculosis BCG. J. Gen. Microbiol. 63:29-39.
  66. Winder, F. G., and S. A. Rooney. 1970. The effects of isoniazid on the carbohydrates of Mycobacterium tuberculosis BCG. Biochem. J. 117:355-368.
  67. World Health Organization. 2003. World health report 2003. Shaping the future, p. 1-36. World Health Organization, Geneva, Switzerland.
  68. Youmans, A. S., and G. P. Youmans. 1968. Ribonucleic acid, deoxyribonu- cleic acid, and protein content of cells of different ages of Mycobacterium tuberculosis and the relationship to immunogenicity. J. Bacteriol. 95:272-279.