Yield Stress Materials in Soft Condensed Matter (original) (raw)

Macroscopic vs. local rheology of yield stress fluids

Journal of Non-Newtonian Fluid Mechanics, 2009

From MRI velocimetry we measure the local flow characteristics of a Carbopol gel in a Couette geometry under different inner cylinder rotation velocities. Associated with torque data under the same flow conditions we deduce the local, steady-state, simple shear, constitutive equation of the material within a relatively wide range of shear rates [10 −2 ; 100 s −1 ]. Then we show that in this range of shear rates this "local" behaviour is in excellent agreement with the "macroscopic" behaviour deduced from conventional rheometry with cone and plate and Couette geometries. We can conclude that this material effectively behaves as a simple yield stress fluid with a constitutive equation well represented by a Herschel-Bulkley model. This behaviour, likely due to the soft-jammed structure of the fluid, contrasts with that of aggregated systems which exhibit thixotropy and shear-banding at low shear rates.

Unification of the Rheological Physics of Yield Stress Fluids

Physical Review Letters, 2021

The physics above and below the yield stress is unified by a simple model for viscoplasticity that accounts for the nonlinear rheology of multiple yield stress fluids. The model has a rate-dependent relaxation time, allows for plastic deformation below the yield stress, and indicates that rapid elastic deformation aids yielding. A range of commonly observed rheological behaviors are predicted, including the smooth overshoot in the loss modulus and the recently discovered contributions from recoverable and unrecoverable strains in amplitude sweeps.

Heterogeneous yielding dynamics in a colloidal gel

Soft Matter, 2010

Attractive colloidal gels display a solid-to-fluid transition as shear stresses above the yield stress are applied. This shear-induced transition is involved in virtually any application of colloidal gels. It is also crucial for controlling material properties. Still, in spite of its ubiquity, the yielding transition is far from understood, mainly because rheological measurements are spatially averaged over the whole sample. Here, the instrumentation of creep and oscillatory shear experiments with high-frequency ultrasound opens new routes to observing the local dynamics of opaque attractive colloidal gels. The transition proceeds from the cell walls and heterogeneously fluidizes the whole sample with a characteristic time whose variations with applied stress suggest the existence of an energy barrier linked to the gelation process. The present results provide new test grounds for computer simulations and theoretical calculations in the attempt to better understand the yielding transition. The versatility of the technique should also allow extensive mesoscopic studies of rupture mechanisms in soft solids ranging from crystals to glassy materials.

Shear banding and yield stress in soft glassy materials

Physical Review E, 2008

Shear localization is a generic feature of flows in yield stress fluids and soft glassy materials but is incompletely understood. In the classical picture of yield stress fluids, shear banding happens because of a stress heterogeneity. Using recent developments in magnetic resonance imaging velocimetry, we show here for a colloidal gel that even in a homogeneous stress situation shear banding occurs, and that the width of the flowing band is uniquely determined by the macroscopically imposed shear rate rather than the stress. We present a simple physical model for flow of the gel showing that shear banding ͑localization͒ is a flow instability that is intrinsic to the material, and confirm the model predictions for our system using rheology and light scattering.

Transient Shear Banding in a Simple Yield Stress Fluid

Physical Review Letters, 2010

We report a large set of experimental data which demonstrates that a simple yield stress fluid, i.e., which does not present aging or thixotropy, exhibits transient shear banding before reaching a steady state characterized by a homogeneous, linear velocity profile. The duration of the transient regime decreases as a power law with the applied shear rate _ . This power-law behavior, observed here in carbopol dispersions, does not depend on the gap width and on the boundary conditions for a given sample preparation. For _ & 0:1 s À1 , heterogeneous flows could be observed for as long as 10 5 s. These local dynamics account for the ultraslow stress relaxation observed at low shear rates.

The yielding dynamics of a colloidal gel

Attractive colloidal gels display a solid-to-fluid transition as shear stresses above the yield stress are applied. This shear-induced transition is involved in virtually any application of colloidal gels. It is also crucial for controlling material properties. Still, in spite of its ubiquity, the yielding transition is far from understood, mainly because rheological measurements are spatially averaged over the whole sample. Here, the instrumentation of creep and oscillatory shear experiments with high-frequency ultrasound opens new routes to observing the local dynamics of opaque attractive colloidal gels. The transition proceeds from the cell walls and heterogeneously fluidizes the whole sample with a characteristic time whose variations with applied stress suggest the existence of an energy barrier linked to the gelation process. The present results provide new test grounds for computer simulations and theoretical calculations in the attempt to better understand the yielding transition. The versatility of the technique should also allow extensive mesoscopic studies of rupture mechanisms in soft solids ranging from crystals to glassy materials.

From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids

Soft Matter, 2011

Stress-induced fluidization of a simple yield stress fluid, namely a carbopol microgel, is addressed through extensive rheological measurements coupled to simultaneous temporally and spatially resolved velocimetry. These combined measurements allow us to rule out any bulk fracture-like scenario during the fluidization process such as that suggested in [Caton et al., Rheol Acta, 2008, 47, 601-607]. On the contrary, we observe that the transient regime from solid-like to liquid-like behaviour under a constant shear stress s successively involves creep deformation, total wall slip, and shear banding before a homogeneous steady state is reached. Interestingly, the total duration s f of this fluidization process scales as s f f 1/(s À s c) b , where s c stands for the yield stress of the microgel, and b is an exponent which only depends on the microgel properties and not on the gap width or on the boundary conditions. Together with recent experiments under imposed shear rate [Divoux et al., Phys. Rev. Lett., 2010, 104, 208301], this scaling law suggests a route to rationalize the phenomenological Herschel-Bulkley (HB) power-law classically used to describe the steady-state rheology of simple yield stress fluids. In particular, we show that the steady-state HB exponent appears as the ratio of the two fluidization exponents extracted separately from the transient fluidization processes respectively under controlled shear rate and under controlled shear stress.

The solid–fluid transition in a yield stress shear thinning physical gel

Rheologica Acta, 2009

We present an experimental investigation of the solid–fluid transition in a yield stress shear thinning physical gel (Carbopol® 940) under shear. Upon a gradual increase of the external forcing, we observe three distinct deformation regimes: an elastic solid-like regime (characterized by a linear stress–strain dependence), a solid–fluid phase coexistence regime (characterized by a competition between destruction and reformation of the gel), and a purely viscous regime (characterized by a power law stress-rate of strain dependence). The competition between destruction and reformation of the gel is investigated via both systematic measurements of the dynamic elastic moduli (as a function of stress, the amplitude, and temperature) and unsteady flow ramps. The transition from solid behavior to fluid behavior displays a clear hysteresis upon increasing and decreasing values of the external forcing. We find that the deformation power corresponding to the hysteresis region scales linearly with the rate at which the material is being forced (the degree of flow unsteadiness). In the asymptotic limit of small forcing rates, our results agree well with previous steady state investigations of the yielding transition. Based on these experimental findings, we suggest an analogy between the solid–fluid transition and a first-order phase transition, e.g., the magnetization of a ferro-magnet where irreversibility and hysteresis emerge as a consequence of a phase coexistence regime. In order to get further insight into the solid–fluid transition, our experimental findings are complemented by a simple kinetic model that qualitatively describes the structural hysteresis observed in our rheological experiments. The model is fairly well validated against oscillatory flow data by a partial reconstruction of the Pipkin space of the material’s response and its nonlinear spectral behavior.

Stress Overshoots in Simple Yield Stress Fluids

Physical Review Letters

Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as "stress overshoot." This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress σ M and strain γ M that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior to the global rheological observables.