Oxygen- and Glucose-Dependent Regulation of Central Carbon Metabolism in Pichia anomala (original) (raw)

Oxygen- and Glucose-Dependent Regulation of Central Carbon Metabolism in Pichia anomala

Applied and Environmental Microbiology, 2004

We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose ؊1) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate production. Despite low or absent ethanol formation, the activities of pyruvate decarboxylase and alcohol dehydrogenase were high during aerobic growth on glucose or succinate. No activation of these enzyme activities was observed after a glucose pulse. However, after the shift to oxygen limitation, both enzymes were activated threefold. Metabolic flux analysis revealed that the tricarboxylic acid pathway operates as a cycle during aerobic batch culture and as a two-branched pathway under oxygen limitation. Glucose catabolism through the pentose phosphate pathway was lower during oxygen limitation than under aerobic growth. Overall, our results demonstrate that P. anomala exhibits a Pasteur effect and not a Crabtree effect, i.e., oxygen availability, but not glucose concentration, is the main stimulus for the regulation of the central carbon metabolism.

Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation

Applied Microbiology and Biotechnology, 2004

The biocontrol yeast Pichia anomala prevents mould damage of moist cereal grain during malfunctioning airtight storage but it can also spoil food and feed. This thesis focuses on the physiology and metabolism of P. anomala, in particular during oxygen limitation, a condition relevant to airtight storage of cereal grain. P. anomala grew under strictly anaerobic conditions, at temperatures between 3ºC and 37ºC, pH values between 2.0 and 12.4, low water activity (0.85), and on many different nutrients. Accumulation of low-molecular compounds in living cells was analysed by HR MAS-NMR. Glycerol, arabitol, and trehalose accumulation increased with reduced oxygen availability, indicating a role during oxygen-limited growth. Regulation of the central aerobic and hypoxic metabolism of P. anomala was investigated under controlled fermentor conditions. Oxygen limitation induced alcoholic fermentation as well as activity of the key fermentative enzymes, ADH and PDC. Metabolic flux analysis revealed that the TCA pathway operated as a cycle during aerobic batch culture and as a twobranched pathway under oxygen limitation. Hypoxic conditions also increased the production of ethyl acetate, an ester involved in the biocontrol activity of P. anomala. Genes encoding the ADH and PDC enzymes were cloned, PaADH1, PaADH2, and PaPDC1, and their expression was analysed with real-time RT-PCR. PaADH1 and PaPDC1 were expressed during aerobic growth on glucose and ethanol and were up-regulated in response to oxygen limitation. PaADH2 expression was low during these growth conditions, i.e. <1% of the level of its isogene, PaADH1. In cells grown on succinate, the expression of the two ADH isogenes was the opposite, high expression of PaADH2 and low expression of PaADH1. The upregulation of gene expression and enzyme activity did not quantitatively correlate with glycolytic flux. Thus, additional regulatory phenomena at the posttranscriptional and posttranslational level are important in the distribution of carbon through the respiratory and fermentative pathways.

Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol

2004

Growth efficiency and regulation of key enzyme activities were studied in carbon-and energy-limited chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol at a fixed dilution rate. Biomass yields on substrate carbon and oxygen could be adequately described as the net result of growth on the single substrates. Activities of isocitrate lyase and malate synthase were not detected in cell-free extracts of glucose-limited cultures. However, both enzymes were present when the ethanol fraction in the reservoir medium exceeded the theoretical minimum above which the glyoxylate cycle is required for anabolic reactions. Fructose-1,6bisphosphatase activity was only detectable at high ethanol fractions in the feed, when activity of this enzyme was required for synthesis of hexose phosphates. Phospho-enol-pyruvate-carboxykinase activity was not detectable in extracts from glucose-grown cultures and increased with the ethanol fraction in the feed. It is concluded that, during carbon-limited growth of S. cerevisiae on mixtures of glucose and ethanol, biosynthetic intermediates with three or more carbon atoms are preferentially synthesized from glucose. Synthesis of the key enzymes of gluconeogenesis and the glyoxylate cycle is adapted to the cells' requirement for these intermediates. The gluconeogenic enzymes and their physiological antagonists (pyruvate kinase, pyruvate carboxylase and phosphofructokinase) were expressed simultaneously at high ethanol fractions in the feed. If futile cycling is prevented under these conditions, this is not primarily achieved by tight control of enzyme synthesis.

Sibirny, A.A., Titorenko, V.I., Efremov, B.D. and Tolstorukov, I.I. Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast (1987) 3:233-241

Yeast

The effect of various carbon compounds on the synthesis of alcohol oxidase in a medium with methanol was studied in the wild type strain of Pichia pinus as well as in gcrl and ecrl mutants defective in glucose and ethanol repression of methanol metabolic enzymes, respectively. Compounds repressing the synthesis of alcohol oxidase in the wild type strain were divided into four groups. Repression of alcohol oxidase by compounds of the first group (glucose, fructose, mannose, galactose, L-sorbose and xylose) was impaired only in the gcrl mutant and that by compounds of the second group (ethanol, acetate, 2-oxoglutarate and erythritol) only in the ecrl mutant. Repression by compounds of the third group (malate, dihydroxyacetone) was not impaired in both these regulatory mutants and that by compounds of the fourth group (succinate, fumarate, L-arabinose, sorbitol, salicin, xylitol and cellobiose) was partially reduced in both gcrl and ecrl strains.

Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions

Applied and environmental microbiology, 2012

Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 M, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

PloS one, 2016

In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer...

Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 strain grown under carbon-sufficient, nitrogen-limited oenological conditions

2012

Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 M, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis

Applied Microbiology and Biotechnology, 2005

The fermentative and respiratory metabolism of Pichia stipitis wild-type strain CBS 5774 and the derived auxotrophic transformation recipient PJH53 trp5-10 his3-1 were examined in differentially oxygenated glucose cultures in the hermetically sealed Sensomat system. There was a good agreement of the kinetics of gas metabolism, growth, ethanol formation and glucose utilisation, proving the suitability of the Sensomat system for rapid and inexpensive investigation of strains and mutants for their respiratory and fermentative metabolism. Our study revealed respiro-fermentative growth by the wild-type strain, although the cultures were not oxygen-limited. The induction of respiro-fermentative behaviour was obviously due to the decrease in oxygen tension but not falling below a threshold of oxygen tension. The responses differed depending on the velocity of the decrease in oxygen tension. At high oxygenation (slow decrease in oxygen tension), ethanol production was induced but glucose uptake was not influenced. At low oxygenation, glucose uptake and ethanol formation increased during the first hours of cultivation. The transformation recipient PJH53 most probably carries a mutation that influences the response to a slow decrease in oxygen tension, since almost no ethanol formation was found under these conditions.

Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeastPichia pinus

Yeast, 1987

The effect of various carbon compounds on the synthesis of alcohol oxidase in a medium with methanol was studied in the wild type strain of Pichia pinus as well as in gcrl and ecrl mutants defective in glucose and ethanol repression of methanol metabolic enzymes, respectively. Compounds repressing the synthesis of alcohol oxidase in the wild type strain were divided into four groups. Repression of alcohol oxidase by compounds of the first group (glucose, fructose, mannose, galactose, L-sorbose and xylose) was impaired only in the gcrl mutant and that by compounds of the second group (ethanol, acetate, 2-oxoglutarate and erythritol) only in the ecrl mutant. Repression by compounds of the third group (malate, dihydroxyacetone) was not impaired in both these regulatory mutants and that by compounds of the fourth group (succinate, fumarate, L-arabinose, sorbitol, salicin, xylitol and cellobiose) was partially reduced in both gcrl and ecrl strains.

Steady-state and transient-state analyses of aerobic fermentation in

FEMS Yeast Research, 2002

Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h 31 the metabolism was purely respiratory, and at dilution rates above 0.5 h 31 the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight) 31 h 31 and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20^50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.