Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells (original) (raw)
Related papers
mBio, 2017
The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless...
A Visual Assay to Monitor T6SS-mediated Bacterial Competition
Journal of Visualized Experiments, 2013
Type VI secretion systems (T6SSs) are molecular nanomachines allowing Gram-negative bacteria to transport and inject proteins into a wide variety of target cells 1, . The T6SS is composed of 13 core components and displays structural similarities with the tail-tube of bacteriophages 3
bioRxiv (Cold Spring Harbor Laboratory), 2021
The type six secretion system (T6SS) is a prevalent bacterial weapon delivering toxic effector proteins into nearby competitors. In addition to immunity genes that protect against a particular effector, alternate yet crucial nonspecific defences have also recently been identified. To systematically identify genes influencing T6SS susceptibility in numerous species, we designed a Tn-Seq-based competition assay. Combined with follow-up analyses using E. coli and V. cholerae gene knockout collections, we demonstrate that our Tn-Seq competition technique can be used to identify both immunity and non-immunity defences against the T6SS. We also identify E. coli proteins that facilitate T6SS-mediated cell death, including metabolic genes such as cyaA and gltA, where mutant strains were resistant to attack. Our findings act as a proof-of-concept for the technique while also illuminating novel genes of interest. Since Tn-Seq can be applied in numerous species, our method has broad potential for identifying diverse T6SS defence genes across genomes in a high-throughput manner. Importance The type six secretion system (T6SS) is a molecular poison-tipped spear that bacteria use to kill nearby competitors. To prevent self killing, they use antitoxins called immunity genes that specifically neutralize the poisons. Beyond immunity genes, multiple additional defences have recently been discovered but there are likely many more across the genomes of diverse species. To help discover these novel mechanisms, we designed a high-throughput method that can be used in numerous different species to rapidly identify genes involved in sensitivity to T6SS attacks. Using T6SS 'killers' delivering individual poisons and two commonly studied 'prey' bacteria, we show proof-of-principle that the technique can discover proteins that make the prey cells more resistant or sensitive to particular. CC-BY-NC-ND 4.
Effector loading onto the VgrG carrier activates type VI secretion system assembly
EMBO reports
The type VI secretion system (T6SS) is used by many bacteria to engage in social behavior and can affect the health of its host plant or animal. Because activities associated with T6SSs are often costly, T6SSs must be tightly regulated. However, our knowledge regarding how T6SS assembly and contraction are regulated remains limited. Using the plant pathogen Agrobacterium tumefaciens, we show that effectors are not just passengers but also impact on T6SS assembly. The A. tumefaciens strain C58 encodes one T6SS and two Tde DNase toxin effectors used as major weapons for interbacterial competition. Here, we demonstrate that loading of Tde effectors onto their cognate carriers, the VgrG spikes, is required for active T6SS secretion. The assembly of the TssBC contractile sheath occurs only in the presence of Tde effectors. The requirement of effector loading for efficient T6SS secretion was also validated in other A. tumefaciens strains. We propose that such a mechanism is used by bacteria as a strategy for efficacious T6SS firing and to ensure that effectors are loaded onto the T6SS prior to completing its assembly.
Manipulating the type VI secretion system spike to shuttle passenger proteins
PLOS ONE, 2020
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined "evolved" components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, βlactamase, a covalent extension of an "evolved" VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer.
The rise of the Type VI secretion system
F1000prime reports, 2013
Bacterial cells have developed multiple strategies to communicate with their surrounding environment. The intracellular compartment is separated from the milieu by a relatively impermeable cell envelope through which small molecules can passively diffuse, while larger macromolecules, such as proteins, can be actively transported. In Gram-negative bacteria, the cell envelope is a double membrane, which houses several supramolecular protein complexes that facilitate the trafficking of molecules. For example, bacterial pathogens use these types of machines to deliver toxins into target eukaryotic host cells, thus subverting host cellular functions. Six different types of nanomachines, called Type I - Type VI secretion systems (T1SS - T6SS), can be readily identified by their composition and mode of action. A remarkable feature of these protein secretion systems is their similarity to systems with other biological functions, such as motility or the exchange of genetic material. The T6SS...
mBio
A hallmark of social microorganisms is their ability to engage in complex and coordinated behaviors that depend on cooperative and synchronized actions among many cells. For instance, myxobacteria use an aggregation strategy to form multicellular, spore-filled fruiting bodies in response to starvation. One barrier to the synchronization process is physiological heterogeneity within clonal populations. How myxobacteria cope with these physiological differences is poorly understood. Here, we investigated the interactions between closely related but physiologically distinct Myxococcus xanthus populations. We used a genetic approach to create amino acid auxotrophs and tested how they interact with a parental prototroph strain. Importantly, we found that auxotrophs were killed by their prototroph siblings when the former were starved for amino acids but not when grown on rich medium or when both strains were starved. This antagonism depended on the type VI secretion system (T6SS) as well...
The Versatile Type VI Secretion System
Microbiology Spectrum
Bacterial type VI secretion systems (T6SSs) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the 10 years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. Researchers in the field are beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this article, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a giv...
An Overview of Anti-Eukaryotic T6SS Effectors
Frontiers in Cellular and Infection Microbiology, 2020
The type VI secretion system (T6SS) is a transmembrane multiprotein nanomachine employed by many Gram-negative bacterial species to translocate, in a contact-dependent manner, effector proteins into adjacent prokaryotic or eukaryotic cells. Typically, the T6SS gene cluster encodes at least 13 conserved core components for the apparatus assembly and other less conserved accessory proteins and effectors. It functions as a contractile tail machine comprising a TssB/C sheath and an expelled puncturing device consisting of an Hcp tube topped by a spike complex of VgrG and PAAR proteins. Contraction of the sheath propels the tube out of the bacterial cell into a target cell and leads to the injection of toxic proteins. Different bacteria use the T6SS for specific roles according to the niche and versatility of the organism. Effectors are present both as cargo (by non-covalent interactions with one of the core components) or specialized domains (fused to structural components). Although several anti-prokaryotic effectors T6SSs have been studied, recent studies have led to a substantial increase in the number of characterized anti-eukaryotic effectors. Against eukaryotic cells, the T6SS is involved in modifying and manipulating diverse cellular processes that allows bacteria to colonize, survive and disseminate, including adhesion modification, stimulating internalization, cytoskeletal rearrangements and evasion of host innate immune responses.