J. Steroid Biochem 2003 (original) (raw)
Related papers
Sex steroid hormones act as growth factors
Journal of Steroid Biochemistry and Molecular Biology, 2002
We observed that sex steroid hormones, like growth factors, stimulate the Src/Ras/erk pathway of cell lines derived from human mammary or prostate cancers. In addition, hormone-dependent pathway activation can be induced in Cos cells, upon transfection of classic steroid receptors. Cross-talks between sex steroid receptors regulate their association with Src and consequent pathway activation. Oestradiol treatment of MCF-7 cells triggers simultaneous association of ER with Src and p85, the regulatory subunit of phosphatidylinositol-3-kinase (PI3-kinase) and activation of Src-and PI3-K-dependent pathways. Activation of the latter pathway triggers cyclin D1 transcription, that is unaffected by Mek-1 activation. This suggests that simultaneous activation of different signalling effectors is required to target different cell cycle components. Thus, a novel reciprocal cross-talk between the two pathways appears to be mediated by the ER. In all tested cells, activation of the signalling pathways has a proliferative role. Transcriptionally inactive ER expressed in NIH 3T3 cells responds to hormone causing Src/Ras/Erk pathway activation and DNA synthesis. This suggests that in these cells genomic activity is required for later events of cell growth.
Src Is an Initial Target of Sex Steroid Hormone Action
Annals of The New York Academy of Sciences, 2002
(4) Other signaling pathways including P13K/AKT are also stimulated by steroids. The aim of future work will be to arrive at an integrated general view of the different signaling pathways activated by steroids and to analyze the concert between these pathways and the hormonal transcriptional action. This general view should be simultaneously verified in different cell contexts, under different physiologic and pathologic conditions. We expect that the new technologies, above all gene and protein microarray, will make this goal feasible.
Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways
Steroids, 2009
Both steroids and growth factors stimulate proliferation of steroid-dependent tumor cells, and interaction between these signaling pathways occurs at several levels. Steroid receptors are classified as ligand-activated transcription factors, and steps by which they activate target gene transcription are well understood. Several steroid responses have now been functionally linked to other intracellular signaling pathways, including c-Src or tyrosine kinase receptors. Steroids such as 17-estradiol (E2), via binding to cytoplasmic or membrane-associated receptors, were also shown to rapidly activate intracellular signaling cascades such as ERK, PI3K and STATs. These E2-stimulated phosphorylations can then contribute to altered tumor cell function. ER-positive breast cancer cells, in which proliferation is stimulated by E2 and suppressed by antiestrogens, have been of particular interest in dissecting nuclear and cytoplasmic roles of estrogen receptors (ER). In some cell contexts, ER interacts directly with the intracellular tyrosine kinase c-Src and other cytoplasmic signaling and adaptor molecules, such as Shc, PI3K, MNAR, and p130 Cas. Although the hierarchy among these associations is not known, it is clear that c-Src plays a fundamental role in both growth factor and E2-stimulated cell growth, and this may also require other growth factor receptors such as those for EGF or IGF-1. STAT transcription factors represent one pathway to integrate E2 cytoplasmic and nuclear signaling. STAT5 is phosphorylated in the cytoplasm at an activating tyrosine in response to E2 or EGF, and then is translocated to the nucleus to stimulate target gene transcription. E2 stimulates recruitment of STAT5 and ER to the promoter of several proliferative genes, and STAT5 knockdown prevents recruitment of either protein to these promoters. STAT5 activation by E2 in breast cancer cells requires c-Src and EGF receptor, and inhibition of c-Src or EGFR, or knockdown of STAT5, prevents E2 stimulation of several genes and breast cancer cell proliferation. Hyperactivation of the growth factor receptor-c-Src pathway can in some contexts decrease growth responses to E2, or render cells and tumors resistant to suppressive actions of endocrine therapies. Crosstalk between growth factors and steroids in both the cytoplasm and nucleus may thus have a profound impact on complex biological processes such as cell growth, and may play a significant role in the treatment of steroid-dependent breast cancers.
2005
Under conditions of short-term hormone deprivation, epidermal growth factor (EGF) induces DNA synthesis, cytoskeletal changes, and Src activation in MCF-7 and LNCaP cells. These effects are drastically inhibited by pure estradiol or androgen antagonists, implicating a role of the steroid receptors in these findings. Interestingly, EGF triggers rapid association of Src with androgen receptor (AR) and estradiol receptor A (ERA) in MCF-7 cells or ERB in LNCaP cells. Here, we show that, through EGF receptor (EGFR) and erb-B2, EGF induces tyrosine phosphorylation of ER preassociated with AR, thereby triggering the assembly of ER/AR with Src and EGFR. Remarkably, experiments in Cos cells show that this complex stimulates EGF-triggered EGFR tyrosine phosphorylation. In turn, estradiol and androgen antagonists, through the Src-associated receptors, prevent Src activation by EGF and heavily reduce EGFR tyrosine phosphorylation and the subsequent multiple effects, including DNA synthesis and cytoskeletal changes in MCF-7 cells. In addition, knockdown of ERa or AR gene by small interfering RNA (siRNA) almost abolishes EGFR tyrosine phosphorylation and DNA synthesis in EGF-treated MCF-7 cells. The present findings reveal that steroid receptors have a key role in EGF signaling. EGFR tyrosine phosphorylation, depending on Src, is a part of this mechanism. Understanding of EGF-triggered growth and invasiveness of mammary and prostate cancer cells expressing steroid receptors is enhanced by this report, which reveals novel aspects of steroid receptor action. (Cancer Res 2005; 65(22): 10585-93) Note: A. Migliaccio and M. Di Domenico contributed equally to this work. Requests for reprints: Ferdinando Auricchio, Dipartimento di Patologia Generale,
Embo Journal, 1998
The molecular mechanisms by which ovarian hormones stimulate growth of breast tumors are unclear. It has been reported previously that estrogens activate the signal-transducing Src/p21 ras /Erk pathway in human breast cancer cells via an interaction of estrogen receptor (ER) with c-Src. We now show that progestins stimulate human breast cancer T47D cell proliferation and induce a similar rapid and transient activation of the pathway which, surprisingly, is blocked not only by anti-progestins but also by anti-estrogens. In Cos-7 cells transfected with the B isoform of progesterone receptor (PR B ), progestin activation of the MAP kinase pathway depends on co-transfection of ER. A transcriptionally inactive PR B mutant also activates the signaling pathway, demonstrating that this activity is independent of transcriptional effects. PR B does not interact with c-Src but associates via the N-terminal 168 amino acids with ER. This association is required for the signaling pathway activation by progestins. We propose that ER transmits to the Src/p21 ras /Erk pathway signals received from the agonist-activated PR B . These findings reveal a hitherto unrecognized cross-talk between ovarian hormones which could be crucial for their growth-promoting effects on cancer cells.
The Journal of Steroid Biochemistry and Molecular Biology
The Journal of Steroid Biochemistry and Molecular Biology, 2011
Gene regulation by steroid hormones involves genomic and non-genomic signaling pathways and the relationship between these two pathways is unknown. Genomic actions are often mediated by binding of the ligand-activated hormone receptors to hormone responsive elements (HREs) followed by recruitment of co-regulators, remodeling of chromatin and formation of the transcription initiation complex. The non-genomic effects of steroid hormones involve the rapid and transient activation of several kinase cascades often mediated by a subpopulation of "nuclear" receptors located in the cytoplasmic side of the cell membrane. The progesterone effect on breast cancer cell proliferation involves activation of the Src/Ras/Erk cascade mediated by a specific interaction between two domains of the N-terminal half of PR and the ligand-binding domain of ER␣. Unexpectedly, selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV transcriptional activation. A complex of activated PR, Erk and Msk1 is recruited to promoter already 5 min after hormone treatment and phosphorylates histone H3 at serine 10, leading to displacement of HP1␥, as a requisite for recruitment of Src1, chromatin remodeling complexes (hSnf2h and Brg1) and RNA polymerase II. Thus, activation of signaling cascades in the cytoplasm is essential for chromatin remodeling and transcriptional activation of a subset of steroid hormone target genes.
Analysis of Androgen Receptor Rapid Actions in Cellular Signaling Pathways: Receptor/Src Association
2011
Much evidence indicates that, with few exceptions, non-genomic actions of steroids are mediated by receptors universally known as nuclear receptors. Steroid receptors do not exhibit intrinsic tyrosine kinase activity. Nevertheless, they stimulate different signaling pathways in cytoplasm of target cells, including those dependent on Src, a cytoplasmic tyrosine kinase. Steroid-induced Src activation regulates cell cycle progression, survival, migration, and associated processes, such as cell growth and differentiation. Androgen stimulation of human prostate cancer-derived LNCaP cells triggers cell cycle progression and proliferation. The key event in this process is the association of androgen receptor (AR) with Src. This association triggers activation of the Src/Ras/Erk pathway and finally impacts cell cycle. Androgen stimulation of fibroblasts also induces AR/Src association, which triggers DNA synthesis. Prevention of this association by a receptor-derived peptide competing for AR interaction with Src specifically inhibits the androgen receptor-dependent proliferative effect in vitro and in vivo.
Molecular Cancer Research, 2007
This report offers direct evidence that association of the estradiol receptor (ER) with Src triggered by steroid agonists or growth factors controls breast and prostate cancer cell growth. This association is abolished in whole cells and in vitro by a six-amino-acid peptide that mimics the sequence around the phosphotyrosine residue in position 537 of the human ERα. The phosphorylated peptide, at nanomolar concentrations, is taken up by MCF-7 and LNCaP cells derived from human mammary and prostate cancers, respectively. In addition, to block the ER/Src interaction, the phosphopeptide inhibits Src/Erk pathway, cyclin D1 expression, and DNA synthesis induced by estradiol or androgen or triggered by epidermal growth factor. In contrast, no inhibition of the Src-mediated epidermal growth factor action on DNA synthesis is detectable in human mammary cancer cells that do not express ER (MDA-MB231), indicating that the peptide specifically targets the ER-associated Src. Remarkably, the pep...
Epidermal Growth Factor Directs Sex-specific Steroid Signaling through Src Activation
Journal of Biological Chemistry, 2007
Estrogens and androgens exert many biological effects that do not require interactions of their receptors with chromosomal DNA. However, it has been a long-standing question how the sex steroid receptors provoke signal transduction outside the nucleus. Here we have shown that epidermal growth factor (EGF) directs sex-specific steroid signaling through Src activation. We have revealed that estrogen (E2)-induced Src activation takes place in, not only plasma, but also endomembranes. This was found ascribed to the existence of EGF and the occurrence of EGF receptor (EGFR)-involved endocytosis of estrogen receptor together with Src. EGFR, estrogen receptor, and Src were found to form a complex upon E2 stimulation. The cell growth of breast cancer-derived MCF-7 cells was found to remarkably increase through the above EGF-involved estrogen-signaling process. In contrast, the androgen 5␣-dihydrotestosterone-induced Src activation occurs only in the plasma membrane free from the interaction of EGFR with androgen receptor, irrespective of EGF. The cell growth occurred only moderately as a result. The spatial difference in Src activation between E2 and 5␣-dihydrotestosterone may be responsible for the different extent of observed cell growth.