Bacillus anthracis (original) (raw)

Molecular Epidemiology of Bacillus anthracis: Determining the Correct Origin

Applied and Environmental Microbiology, 2008

We analyzed and compared strains of Bacillus anthracis isolated from husbandry and industrial anthrax cases in Switzerland between 1952 and 1981 with published data using multiple-locus variable-number tandem repeat analysis. Strains isolated from autochthonous cases of anthrax in cattle belong to genotype B2, together with strains from continental Europe, while human B. anthracis strains clustered with genotype A4. These strains could be traced back to outbreaks of human anthrax that occurred between 1978 and 1981 in a factory processing cashmere wool from the Indian subcontinent. We interpret the worldwide occurrence of B. anthracis strains of cluster A4 to be due to the extensive global trade of untreated cashmere wool during the last century.

Global Genetic Population Structure of Bacillus anthracis

PLoS ONE, 2007

Anthrax, caused by the bacterium Bacillus anthracis, is a disease of historical and current importance that is found throughout the world. The basis of its historical transmission is anecdotal and its true global population structure has remained largely cryptic. Seven diverse B. anthracis strains were whole-genome sequenced to identify rare single nucleotide polymorphisms (SNPs), followed by phylogenetic reconstruction of these characters onto an evolutionary model. This analysis identified SNPs that define the major clonal lineages within the species. These SNPs, in concert with 15 variable number tandem repeat (VNTR) markers, were used to subtype a collection of 1,033 B. anthracis isolates from 42 countries to create an extensive genotype data set. These analyses subdivided the isolates into three previously recognized major lineages (A, B, and C), with further subdivision into 12 clonal sub-lineages or sub-groups and, finally, 221 unique MLVA15 genotypes. This rare genomic variation was used to document the evolutionary progression of B. anthracis and to establish global patterns of diversity. Isolates in the A lineage are widely dispersed globally, whereas the B and C lineages occur on more restricted spatial scales. Molecular clock models based upon genome-wide synonymous substitutions indicate there was a massive radiation of the A lineage that occurred in the mid-Holocene (3,064-6,127 ybp). On more recent temporal scales, the global population structure of B. anthracis reflects colonial-era importation of specific genotypes from the Old World into the New World, as well as the repeated industrial importation of diverse genotypes into developed countries via spore-contaminated animal products. These findings indicate humans have played an important role in the evolution of anthrax by increasing the proliferation and dispersal of this now global disease. Finally, the value of global genotypic analysis for investigating bioterrorist-mediated outbreaks of anthrax is demonstrated. Citation: Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, et al (2007) Global Genetic Population Structure of Bacillus anthracis. PLoS ONE 2(5): e461.

Bacillus anthracis evolutionary history: taking advantage of the topology of the phylogenetic tree and of human history to propose dating points

Erciyes Medical Journal, 2020

This review expands on a talk I gave during the "Biology of Anthrax" meeting held in Bari, Italy (September 3 rd-6 th , 2019). The talk was a synthesis of recent investigations taking advantage of the topology of the Bacillus anthracis phylogenetic tree to propose tentative dating points and scenarios. Currently available whole-genome sequence (WGS) data allowed identifying single nucleotide polymorphisms (SNPs) among B. anthracis strains and drawing phylogenetic trees. The geographic origin of the strains and the topology of the tree were used to infer spreading events. Five star-like patterns in the tree (polytomies), each containing at least six branches, were detected. The analysis of the geographic distribution of the strains constituting one such polytomy suggests that it emerged not more than a few centuries ago. The key observation allowing this dating is the finding that the polytomy is anchored into Western Europe and that the main North-American lineage emerged from one of its branches, indicative of a post-Columbian export. From this point, I propose additional working hypotheses which may allow dating key nodes along the phylogeny of B. anthracis corresponding to four "Out-of-Africa" events. While trade of contaminated animal products seems to be the predominant driving force underlying modern long-distance spreading of B. anthracis, invasive military operations and more generally borders instabilities may have played an important role in earlier times. The testing of these hypotheses will require the sequencing of a significant number of additional strains from many countries.

Phylogenetic Placement of Isolates Within the Trans-Eurasian Clade A.Br.008/009 of Bacillus anthracis

Microorganisms

The largest phylogenetic lineage known to date of the anthrax pathogen Bacillus anthracis is the wide-spread, so-called Trans-Eurasian clade systematically categorized as the A.Br.008/009 group sharing two defining canonical single-nucleotide polymorphisms (canSNP). In this study, we genome-sequenced a collection of 35 B. anthracis strains of this clade, derived from human infections, animal outbreaks or soil, mostly from European countries isolated between 1936 and 2008. The new data were subjected to comparative chromosomal analysis, together with 75 B. anthracis genomes available in public databases, and the relative placements of these isolates were determined within the global phylogeny of the A.Br.008/009 canSNP group. From this analysis, we have detected 3754 chromosomal SNPs, allowing the assignation of the new chromosomal sequences to established sub-clades, to define new sub-clades, such as two new Spanish, one Bulgarian or one German group(s), or to introduce orphan linea...

Genetic Diversity in a Bacillus anthracis Historical Collection (1954 to 1988)

Journal of Clinical Microbiology, 2007

Bacillus anthracis , the etiologic agent of anthrax, has been widely described as a genetically monomorphic species. We used both multiple-locus variable-number tandem-repeat analysis (MLVA) and pagA gene sequencing to determine the genetic diversity of a historical collection of B. anthracis isolates collected from the 1950s to the 1980s from various geographic locations and sources. We sequenced the pagA gene of 124 diverse B. anthracis isolates and found all previously identified B. anthracis pagA types except type 4. Sixty-three of the 124 B. anthracis strains were identified as pagA type 6, while 44 were pagA type 5, 12 were pagA type 1, and individual isolates were identified for types 2 and 3, respectively. Two new pagA genotypes were discovered in three environmental isolates within the historical collection. Two isolates had the same new genotype, and an additional isolate produced a second new genotype. MLVA detected 22 previously described genotypes in the historical coll...

Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers

Journal of Bacteriology, 1997

Bacillus anthracis causes anthrax and represents one of the most molecularly monomorphic bacteria known. We have used AFLP (amplified fragment length polymorphism) DNA markers to analyze 78 B. anthracis isolates and six related Bacillus species for molecular variation. AFLP markers are extremely sensitive to even small sequence variation, using PCR and high-resolution electrophoresis to examine restriction fragments. Using this approach, we examined ca. 6.3% of the Bacillus genome for length mutations and ca. 0.36% for point mutations. Extensive variation was observed among taxa, and both cladistic and phenetic analyses were used to construct a phylogeny of B. anthracis and its closest relatives. This genome-wide analysis of 357 AFLP characters (polymorphic fragments) indicates that B. cereus and B. thuringiensis are the closest taxa to B. anthracis, with B. mycoides slightly more distant. B. subtilis, B. polymyxa, and B. stearothermophilus shared few AFLP markers with B. anthracis ...

Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis …

Journal of clinical …

Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.

Pathogenic Bacillus anthracis in the progressive gene losses and gains in adaptive evolution

Background: Sequence mutations represent a driving force of adaptive evolution in bacterial pathogens. It is especially evident in reductive genome evolution where bacteria underwent lifestyles shifting from a free-living to a strictly intracellular or host-depending life. It resulted in lossof-function mutations and/or the acquisition of virulence gene clusters. Bacillus anthracis shares a common soil bacterial ancestor with its closely related bacillus species but is the only obligate, causative agent of inhalation anthrax within the genus Bacillus. The anthrax-causing Bacillus anthracis experienced the similar lifestyle changes. We thus hypothesized that the bacterial pathogen would follow a compatible evolution path.