Rainfall Morphology in Florida Convergence Zones: A Numerical Study (original) (raw)
Related papers
TEMPORAL AND SPATIAL CHARACTERIZATION OF RAINFALL OVER CENTRAL AND SOUTH FLORIDA
Journal of The American Water Resources Association, 2000
requency evaluation and spatial characterization of rainfall in Central and South Florida are presented. Point frequency analysis performed at all available sites has shown that the 2-parameter Gamma probability density function is the best model for monthly rainfall frequency over Central and South Florida. The model's parameters estimated at 145 stations were used to provide monthly rainfall estimates for 10- and 100-year dry and wet return periods. Experimental and theoretical variograms computed for these estimates, as well as the Kriging estimation variance maps, show that the existing rain gage network is less capable of resolving monthly rainfall variation in the wet season than the dry season. May is the dry-to-wet transition month, while October is the wet-to-dry transition month with average rainfall of 4.5 inches. Monthly average rainfall is above 7 inches during the wet season and below 3 inches during the dry season. Two-thirds of the annual rainfall is accumulated in the wet season. Annual average rainfall is maximum (above 60 inches) in many areas along the east coast, and is minimum (below 45 inches) in many areas over Lake Okee-chobee and Central Florida. Rainfall maps show a changing pattern between the wet and the dry seasons. Frontal rainfall occurs in the dry season, while convective rainfall, tropical depression, and hurricanes occur in the wet season. Average rainfall is higher along the east coast area in the dry season and it is higher along the west coast area in the wet season.
Tropical moisture exports (TMEs) may play an important role in extreme precipitation. An analysis of the spatiotemporal structure of precipitation associated with TMEs for the eastern United States at seasonal and daily time scales is presented. TME-based precipitation is characterized based on the change in specific humidity along TME tracks delineated in a Lagrangian analysis of the ERA-Interim dataset. The empirical orthogonal functions (EOFs) of seasonal TME-based precipitation are analyzed separately for each season to identify the dominant modes of interannual variability. Loading patterns for the first EOF show a distinct seasonal cycle in the core region of TME-based precipitation across the eastern United States, while the second EOF describes a northwest–southeast oscillation in the center of TME-induced precipitation occurrence. The EOFs for TMEs are compared against EOFs of gauged flood count data, which exhibit similar spatial structures. Correlations between TME EOFs, geopotential heights, and sea surface temperatures suggest a strong connection between TME-based precipitation, the Pacific–North American (PNA) pattern, Pacific decadal oscillation (PDO), and the Intra-Americas Sea patterns for much of the calendar year. Daily TME-based and total precipitation is projected onto the leading seasonal EOFs to examine the characteristics of upper-quantile daily events. The daily analysis suggests that the PNA can potentially provide information regarding heavy TME-based precipitation at a lead time of 1–10 days or more in most seasons and total precipitation in the winter. The potential for subseasonal, seasonal, and decadal forecasts or conditional simulations of precipitation in the study region is discussed.
Climate Dynamics
The present work evaluates historical precipitation and its indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) in suites of dynamically and statistically downscaled regional climate models (RCMs) against NOAA’s Global Historical Climatology Network Daily (GHCN-Daily) dataset over Florida. The models examined here are: (1) nested RCMs involved in the North American CORDEX (NA-CORDEX) program, (2) variable resolution Community Earth System Models (VR-CESM), (3) Coupled Model Intercomparison Project phase 5 (CMIP5) models statistically downscaled using localized constructed analogs (LOCA) technique. To quantify observational uncertainty, three in situ-based (PRISM, Livneh, CPC) and three reanalysis (ERA5, MERRA2, NARR) datasets are also evaluated against the station data. The reanalyses and dynamically downscaled RCMs generally underestimate the magnitude of the monthly precipitation and the frequency of the extreme rainfall in summer. The models forced...
Interpreting the Trends of Extreme Precipitation in Florida through Pressure Change
Remote Sensing, 2022
Precipitation is one of the many important natural factors impacting agriculture and natural resource management. Although statistics have been applied to investigate the non-stationary trend and the unpredictable variances of precipitation under climate change, existing methods usually lack a sound physical basis that can be generally applied in any location and at any time for future extrapolation, especially in tropical areas. Physically, the formation of precipitation is a result of ascending air which reduces air pressure and condenses moisture into drops, either by irregular terrain or atmospheric phenomena (e.g., via frontal lifting). Thus, in this paper, pressure change events (PCEs) will be used as a physical indicator of the stability of atmospheric systems to reveal the impact of temperature on precipitation in the tropical areas of Florida. By using data from both national and regional weather observation networks, this study segments the continuous observation series in...