Recursive PCA for adaptive process monitoring (original) (raw)

New Adaptive Kernel Principal Component Analysis for Nonlinear Dynamic Process Monitoring

International Journal of Applied Mathematics and Information Sciences

In this paper a new algorithm for adaptive kernel principal component analysis (AKPCA) is proposed for dynamic process monitoring. The proposed AKPCA algorithm combine two existing algorithms, the recursive weighted PCA (RWPCA) and the moving window kernel PCA algorithms. For fault detection and isolation, a set of structured residuals is generated by using a partial AKPCA models. Each partial AKPCAmodel is performed on subsets of variables. The structured residuals are utilized in composing an isolation scheme, according to a properly designed incidence matrix. The results for applying this algorithm on the nonlinear time varying processes of the Tennessee Eastman shows its feasibility and advantageous performances.

Improved process monitoring using nonlinear principal component models

International Journal of Intelligent Systems, 2008

This paper presents two new approaches for use in complete process monitoring. The first concerns the identification of nonlinear principal component models. This involves the application of linear principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation.The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented. © 2008 Wiley Periodicals, Inc.