Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo (original) (raw)
Related papers
Data in Brief, 2015
This data article contains seven figures and two tables supporting the research article entitled: spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo [1]. The data explain the culture of stromal cells in vitro in three culture systems: discs, scaffolds and scaffolds in a perfusion bioreactor system. Also, quantification of extracellular matrix components (ECM) in vitro and staining of ECM components in vivo can be found here. Finally the quantification of blood vessels dimensions from CD31 signals Contents lists available at ScienceDirect
PloS one, 2014
Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donor...
Journal of Cellular Physiology, 2009
The low bone marrow (BM) MSC titers demand a fast ex vivo expansion process to meet the clinically relevant cell dosage. Attending to the low oxygen tension of BM in vivo, we studied the influence of hypoxia on human BM MSC proliferation kinetics and metabolism. Human BM MSC cultured under 2% (hypoxia) and 20% O2 (normoxia) were characterized in terms of proliferation, cell division kinetics and metabolic patterns. BM MSC cultures under hypoxia displayed an early start of the exponential growth phase, and cell numbers obtained at each time point throughout culture were consistently higher under low O2, resulting in a higher fold increase after 12 days under hypoxia (40 ± 10 vs. 30 ± 6). Cell labeling with PKH26 allowed us to determine that after 2 days of culture, a significant higher cell number was already actively dividing under 2% compared to 20% O2 and BM MSC expanded under low oxygen tension displayed consistently higher percentages of cells in the latest generations (generations 4–6) until the 5th day of culture. Cells under low O2 presented higher specific consumption of nutrients, especially early in culture, but with lower specific production of inhibitory metabolites. Moreover, 2% O2 favored CFU-F expansion, while maintaining BM MSC characteristic immunophenotype and differentiative potential. Our results demonstrated a more efficient BM MSC expansion at 2% O2, compared to normoxic conditions, associated to an earlier start of cellular division and supported by an increase in cellular metabolism efficiency towards the maximization of cell yield for application in clinical settings. J. Cell. Physiol. 223: 27–35, 2010. © 2009 Wiley-Liss, Inc.
Biotechnology Progress, 2008
Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 µmol/10 6 cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher Y L/G in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering
Culture surfaces induce hypoxia-regulated genes in human mesenchymal stromal cells
Biomedical Materials, 2019
Culturing human Mesenchymal stromal cells (hMSCs) in vitro in hypoxic conditions resulted in reduced senescence, enhanced pluripotency and altered proliferation rate. It has been known that in vitro hypoxia affects expression of cell surface proteins. However, the impact of culture surfaces on the hypoxia-regulated genes (HRG) have not yet been reported. This study utilized Next-Generation sequencing to analyse the changes in the gene expression levels of HRG for hMSCs cultured on different culture surfaces. The samples, which were cultured on four different synthesized surfaces (treatments) and tissue culture plate (control), resulted in a difference in growth rate. The sequencing results revealed that the transcription of a number of key genes involved in regulating hypoxic functions were significantly altered, including HIF2A, a marker for potency, differentiation, and various cellular functions. Significant alternations in the expression levels of previously reported oxygen-sens...
Medium Perfusion Flow Improves Osteogenic Commitment of Human Stromal Cells
Stem Cells International
Dynamic culture protocols have recently emerged as part of (bone) tissue engineering strategies due to their ability to represent a more physiological cell environment in vitro. Here, we described how a perfusion flow induced by a simple bioreactor system improves proliferation and osteogenic commitment of human bone marrow stromal cells. L88/5 cells were cultured in poly(methyl methacrylate) custom-milled communicating well plates, in the presence of an osteogenic cocktail containing 1α,25-dihydroxyvitamin D3, L-ascorbic acid 2-phosphate, and β-glycerophosphate. The dynamic cell culture was maintained under perfusion flow stimulation at 1 mL/min for up to 4 days and compared with a static control condition. A cell viability assay showed that the proliferation associated with the dynamic cell culture was 20% higher vs. the static condition. A significantly higher upregulation of the osteogenic markers runt-related transcription factor 2 (RUNX2), collagen type I (COL1A1), osteocalcin...
Biomaterials, 2008
It is well established that the process of neovascularization or neoangiogenesis is coupled to the development and maturation of bone. Bone marrow stromal cells (BMSCs) or mesenchymal stem cells (MSCs) comprise a heterogeneous population of cells that can be differentiated in vitro into both mesenchymal and non-mesenchymal cell lineages. When both rat BMSCs and quail proepicardia (PEs) were seeded onto a threedimensional (3-D) tubular scaffold engineered from aligned collagen type I strands and co-cultured in osteogenic media, the maturation and codifferentiation into osteoblastic and vascular cell lineages were observed. In addition, these cells produced abundant mineralized extracellular matrix materials and vessel-like structures. BMSCs were seeded at a density of 2 Â 10 6 cells/15 mm tube and cultured in basal media for 3 days. Subsequently, on day 3, PEs were seeded onto the same tubes and the co-culture was continued for another 3, 6 or 9 days either in basal or in osteogenic media. Differentiated cells were subjected to immunohistochemical, cytochemical and biochemical analyses. Phenotypic induction was analyzed at mRNA level by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Immunolocalization of key osteogenic and vasculogenic lineage specific markers were examined using confocal scanning laser microscopy. In osteogenic tube cultures, both early and late osteogenic markers were observed and were reminiscent of in vivo expression pattern. Alkaline phosphatase activity and calcium content significantly increased over the observed period of time in osteogenic medium. Abundant interlacing fascicles of QCPN, QH1, isolectin and asmooth muscle actin (a-SMA) positive cells were observed in these tube cultures. These cells formed extensive arborizations of nascent capillary-like structures and were seen amidst the developing osteoblasts in osteogenic cultures. The 3-D culture system not only generated de novo vessel-like structures but also augmented the maturation and differentiation of BMSCs into osteoblasts. Thus, this novel co-culture system provides a useful in vitro model to investigate the functional role and effects of neovascularization in the proliferation, differentiation and maturation of BMSC derived osteoblasts.
Scientific reports, 2016
Modular tissue engineering is based on the cells' innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly re...