the green anole lizard gene clusters of Hox Atypical relaxation of structural constraints in (original) (raw)
Abstract
AI
This study investigates the genomic organization of Hox gene clusters in the green anole lizard, revealing a significant accumulation of retrotransposons that increase the size of these clusters compared to other vertebrates. The presence of extensive repetitive elements challenges previous notions of the structural constraints on Hox genes, suggesting that these genetic variations may have contributed to the evolutionary development of diverse morphological features in Squamata. The findings also point to divergent evolutionary patterns in conserved regions among vertebrate Hox clusters.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (48)
- Amemiya, C.T., Prohaska, S.J., Hill-Force, A., Cook, A., Wasserscheid, J., Ferrier, D.E., Pascual-Anaya, J., Garcia-Fernandez, J., Dewar, K., and Stadler, P.F. 2008. The amphioxus Hox cluster: Characterization, comparative genomics, and evolution. J. Exp. Zoolog. B Mol. Dev. Evol. 310: 465-477.
- Belancio, V.P., Hedges, D.J., and Deininger, P. 2008. Mammalian non-LTR retrotransposons: For better or worse, in sickness and in health. Genome Res. 18: 343-358.
- Brown, W.M. and Taylor, G.R. 1994. The 59-sequence of the murine Hox-b3 (Hox-2.7) gene and its intron contain multiple transcription-regulatory elements. Int. J. Biochem. 26: 1403-1409.
- Cameron, R.A., Rowen, L., Nesbitt, R., Bloom, S., Rast, J.P., Berney, K., Arenas-Mena, C., Martinez, P., Lucas, S., Richardson, P.M., et al. 2006. Unusual gene order and organization of the sea urchin hox cluster. J. Exp. Zoolog. B Mol. Dev. Evol. 306: 45-58.
- Castillo-Davis, C.I., Mekhedov, S.L., Hartl, D.L., Koonin, E.V., and Kondrashov, F.A. 2002. Selection for short introns in highly expressed genes. Nat. Genet. 31: 415-418.
- Cohn, M.J. and Tickle, C. 1999. Developmental basis of limblessness and axial patterning in snakes. Nature 399: 474-479.
- Dehal, P. and Boore, J.L. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3: e314. doi: 10.1371/ journal.pbio.0030314.
- de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., and Balavoine, G. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399: 772-776.
- Deschamps, J. and van Nes, J. 2005. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132: 2931-2942.
- Di-Poı ¨, N., Zakany, J., and Duboule, D. 2007. Distinct roles and regulations for Hoxd genes in metanephric kidney development. PLoS Genet. 3: e232. doi: 10.1371/journal.pgen.0030232.
- Duboule, D. 1994. Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 1994: 135-142.
- Duboule, D. 2007. The rise and fall of Hox gene clusters. Development 134: 2549-2560.
- Duboule, D. and Dolle, P. 1989. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 8: 1497-1505.
- Evgen'ev, M.B. and Arkhipova, I.R. 2005. Penelope-like elements-A new class of retroelements: Distribution, function and possible evolutionary significance. Cytogenet. Genome Res. 110: 510-521.
- Ferrier, D.E. and Holland, P.W. 2002. Ciona intestinalis ParaHox genes: Evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol. Phylogenet. Evol. 24: 412-417.
- Feschotte, C. and Pritham, E.J. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41: 331-368.
- Fried, C., Prohaska, S.J., and Stadler, P.F. 2004. Exclusion of repetitive DNA elements from gnathostome Hox clusters. J. Exp. Zoolog. B Mol. Dev. Evol. 302: 165-173.
- Garcia-Fernandez, J. 2005. Hox, ParaHox, ProtoHox: Facts and guesses. Heredity 94: 145-152.
- Garcia-Gasca, A. and Spyropoulos, D.D. 2000. Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev. Dyn. 219: 261-276.
- Gaunt, S.J. 2000. Evolutionary shifts of vertebrate structures and Hox expression up and down the axial series of segments: A consideration of possible mechanisms. Int. J. Dev. Biol. 44: 109-117.
- Gazave, E., Marques-Bonet, T., Fernando, O., Charlesworth, B., and Navarro, A. 2007. Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol. 8: R21. doi: 10.1186/gb-2007- 8-2-r21.
- Gentles, A.J., Wakefield, M.J., Kohany, O., Gu, W., Batzer, M.A., Pollock, D.D., and Jurka, J. 2007. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 17: 992-1004.
- Godwin, A.R. and Capecchi, M.R. 1998. Hoxc13 mutant mice lack external hair. Genes & Dev. 12: 11-20.
- Graham, A., Papalopulu, N., and Krumlauf, R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57: 367-378.
- Guindon, S. and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704.
- Herault, Y., Beckers, J., Gerard, M., and Duboule, D. 1999. Hox gene expression in limbs: Colinearity by opposite regulatory controls. Dev. Biol. 208: 157-165.
- Hoegg, S. and Meyer, A. 2005. Hox clusters as models for vertebrate genome evolution. Trends Genet. 21: 421-424.
- Kim, C.B., Amemiya, C., Bailey, W., Kawasaki, K., Mezey, J., Miller, W., Minoshima, S., Shimizu, N., Wagner, G., and Ruddle, F. 2000. Hox cluster genomics in the horn shark, Heterodontus francisci. Proc. Natl. Acad. Sci. 97: 1655-1660.
- Kmita, M. and Duboule, D. 2003. Organizing axes in time and space; 25 years of colinear tinkering. Science 301: 331-333.
- Kohany, O., Gentles, A.J., Hankus, L., and Jurka, J. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7: 474. doi: 10.1186/ 1471-2105-7-474.
- Krumlauf, R. 1994. Hox genes in vertebrate development. Cell 78: 191-201.
- Lemons, D. and McGinnis, W. 2006. Genomic evolution of Hox gene clusters. Science 313: 1918-1922.
- Margulies, E.H. and Birney, E. 2008. Approaches to comparative sequence analysis: Towards a functional view of vertebrate genomes. Nat. Rev. Genet. 9: 303-313.
- Meyer, A. 1998. Hox gene variation and evolution. Nature 391: 225-228.
- Montavon, T., Le Garrec, J.F., Kerszberg, M., and Duboule, D. 2008. Modeling Hox gene regulation in digits: Reverse collinearity and the molecular origin of thumbness. Genes & Dev. 22: 346-359.
- Mungpakdee, S., Seo, H.C., Angotzi, A.R., Dong, X., Akalin, A., and Chourrout, D. 2008. Differential evolution of the thirteen atlantic salmon Hox clusters. Mol. Biol. Evol. 25: 1333-1343.
- Page, R.D. 1996. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358.
- Piskurek, O., Austin, C.C., and Okada, N. 2006. Sauria SINEs: Novel short interspersed retroposable elements that are widespread in reptile genomes. J. Mol. Evol. 62: 630-644.
- Richardson, M.K., Crooijmans, R.P., and Groenen, M.A. 2007. Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions. Cytogenet. Genome Res. 117: 110-119.
- Rijli, F.M., Dolle, P., Fraulob, V., LeMeur, M., and Chambon, P. 1994. Insertion of a targeting construct in a Hoxd-10 allele can influence the control of Hoxd-9 expression. Dev. Dyn. 201: 366-377.
- Santini, S., Boore, J.L., and Meyer, A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 13: 1111-1122.
- Simons, C., Pheasant, M., Makunin, I.V., and Mattick, J.S. 2006. Transposon- free regions in mammalian genomes. Genome Res. 16: 164-172.
- Simons, C., Makunin, I.V., Pheasant, M., and Mattick, J.S. 2007. Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics 8: 470. doi: 10.1186/1471-2164-8-470.
- Sinibaldi-Vallebona, P., Lavia, P., Garaci, E., and Spadafora, C. 2006. A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosomes Cancer 45: 1- 10.
- Tanzer, A., Amemiya, C.T., Kim, C.B., and Stadler, P.F. 2005. Evolution of microRNAs located within Hox gene clusters. J. Exp. Zoolog. B Mol. Dev. Evol. 304: 75-85.
- Tarchini, B. and Duboule, D. 2006. Control of Hoxd genes' collinearity during early limb development. Dev. Cell 10: 93-103.
- Zakany, J. and Duboule, D. 2007. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17: 359-366.
- Zakany, J., Kmita, M., Alarcon, P., de la Pompa, J.L., and Duboule, D. 2001. Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106: 207-217.