Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model (original) (raw)

Molecular dynamics in electronically excited states using time-dependent density functional theory

Molecular Physics, 2005

We describe two different implementations of time-dependent density functional theory (TDDFT) for use in excited state molecular dynamics simulations. One is based on the linear response formulation (LR-TDDFT), whereas the other uses a time propagation scheme for the electronic wave functions (P-TDDFT). Photo-induced cis-trans isomerization of C¼C, C¼N and N¼N double bonds is investigated in three model compounds, namely the 2,4-pentadiene-1-iminium cation (PSB), formaldimine and diimide. For formaldimine and diimide, the results obtained with both schemes are in agreement with experimental data and previously reported theoretical results. Molecular dynamics simulations yield new insights into the relaxation pathways in the excited state. For PSB, which is a model system for the retinal protonated Schiff base involved in the visual process, the forces computed from the LR-TDDFT S 1 surface lead to an increased bond length alternation and, consequently, to single bond rotation. On the contrary, P-TDDFT dynamics lead to a decreased bond length alternation, in agreement with CASPT2 and restricted open-shell Kohn-Sham (ROKS) calculations.

Excited state properties of sizable molecules in solution: from structure to reactivity

Theoretical Chemistry Accounts, 2007

We review some recent advances in quantum mechanical methods devised specifically for the study of excited electronic state of large size molecules in solution. The adopted theoretical/computational framework is rooted in the density functional theory (DFT) and its time-dependent extension (TD-DFT) for the characterization of ground and excited states, in the polarizable continuum model (PCM) for the treatment of bulk solvent effects, and in time-dependent quantum mechanical methods for chemical dynamics. Selected applications to the simulation of absorption spectra, to the interpretation of time-resolved experiments, and to the computation of dissociative electron transfer rates are presented and discussed.

Structures and Properties of Electronically Excited Chromophores in Solution from the Polarizable Continuum Model Coupled to the Time-Dependent Density Functional Theory

The Journal of Physical Chemistry A, 2009

This paper provides an overview of recent research activities concerning the quantum-mechanical description of structures and properties of electronically excited chromophores in solution. The focus of the paper is on a specific approach to include solvent effects, namely the polarizable continuum model (PCM). Such a method represents an efficient strategy if coupled to proper quantum-mechanical descriptions such as the time-dependent density functional theory (TDDFT). As a result, the description of molecules in the condensed phase can be extended to excited states still maintaining the computational efficiency and the physical reliability of the ground-state calculations. The most important theoretical and computational aspects of the coupling between PCM and TDDFT are presented and discussed together with an example of application to the study of the low-lying electronic excited states of push-pull chromophores in different solvents.

Anharmonic vibrational state calculations in the electronic excited states studied by time-dependent density functional theory

Chemical Physics Letters, 2007

Time-dependent density functional theory (TDDFT) is combined with the correlation-corrected vibrational self-consistent field method to calculate the fundamental vibrational frequencies of the electronic excited states of diatomic, triatomic, and tetraatomic molecules. Equation of motion coupled-cluster calculations are also carried out for comparison. TDDFT is shown to provide the harmonic and anharmonic frequencies for various excited states with reasonable accuracy by using hybrid functionals, except that several vibrational modes such as hydrogen atom stretching exhibit sizable discrepancies due to the lack of orbital relaxation process in TDDFT.

Permanent dipole moments and energies of excited states from density functional theory compared with coupled cluster predictions: Case of para-nitroaniline

Computational and Theoretical Chemistry, 2013

Different ways to extract properties of excited states from time-dependent density functional theory (TD-DFT) calculations are compared to ab initio results obtained with the Equation of Motion Coupled Cluster approach. The recently proposed a posteriori Tamm-Dancoff approximation (ATDA) predicts the permanent dipole moments to be underestimated by 25% on average, close to the results of the relaxed density TD-DFT formalism, quadratic response formalism, and numerical energy derivatives, while the unrelaxed density approximation results are less accurate (40% overestimate). We also propose a correction for TD-DFT excitation energies, which are known to be problematic for charge transfer states. The static DFT energies evaluated on the relaxed densities of the excited states are found to be more accurate than TD-DFT excitation energies (RMSD is 0.7 eV vs. 1.1 eV, while maximum deviation is À1.0 eV vs. À2.0 eV). This validates ATDA for description of nonlinear optical properties of donor-acceptor molecules, exemplified by para-nitroaniline, and extends this method to improve the excitation energy predictions.

Implementation of the analytic energy gradient for the combined time-dependent density functional theory∕effective fragment potential method: Application to excited-state molecular dynamics simulations

The Journal of Chemical Physics, 2011

Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.

Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores

Chemical Physics, 2010

Almost all time-dependent density-functional theory (TDDFT) calculations of excited states make use of the adiabatic approximation, which implies a frequency-independent exchange-correlation kernel that limits applications to one-hole/one-particle states. To remedy this problem, Maitra et al.[J.Chem.Phys. 120, 5932 (2004)] proposed dressed TDDFT (D-TDDFT), which includes explicit two-hole/two-particle states by adding a frequency-dependent term to adiabatic TDDFT. This paper offers the first extensive test of D-TDDFT, and its ability to represent excitation energies in a general fashion. We present D-TDDFT excited states for 28 chromophores and compare them with the benchmark results of Schreiber et al. [J.Chem.Phys. 128, 134110 (2008).] We find the choice of functional used for the A-TDDFT step to be critical for positioning the 1h1p states with respect to the 2h2p states. We observe that D-TDDFT without HF exchange increases the error in excitations already underestimated by A-TDDFT. This problem is largely remedied by implementation of D-TDDFT including Hartree-Fock exchange.

Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014

Many-body Green's function perturbation theories, such as the GW and Bethe–Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn–Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe–Salpete...