A Soluble Protein Negatively Regulates Phospholipase D Activity. Partial Purification and Characterization (original) (raw)
Related papers
Journal of Biological …, 1995
Phospholipase D (PLD) activation by guanine nucleotides requires protein cofactors from both the membrane and the cytosol. The small GTP-binding protein ADP-ribosylation factor (ARF) has been established as one important component of PLD activation. By stimulating HL-60 cells with various agonists and then isolating the membrane fraction and assaying PLD activity in the presence and absence of GTP␥S, we observed that fMet-Leu-Phe (fMLP) and phorbol esters induced a potentiation of GTP␥S-stimulated PLD activity in the membrane fractions of these cells. Inactive phorbol esters induced no such potentiation. Both fMLP and active phorbol esters induced a 2-3-fold increase in GTP␥Sstimulated PLD in HL-60 membranes. Membranes derived from stimulated HL-60 cells contained 60-70% more ARF as compared with membranes derived from control cells. Membrane contents of ARF were assessed by Western blotting with the anti-ARF monoclonal antibody 1D9 followed by densitometric evaluation. Therefore, ARF translocation correlates with the potentiation of the GTP␥S-stimulated PLD activity. The effect on PLD activity and ARF membrane content achieved through fMLP stimulation was greatly enhanced by prior treatment of the cells with cytochalasin B. Membranes derived from control and fMLP-stimulated cells were assayed for PLD activity in the presence of exogenous ARF and a 50-kDa fraction known to contain elements implicated in PLD activation. The ability of ARF and the 50-kDa fraction to enhance GTP␥S-sensitive PLD activity was significantly reduced when the membranes were derived from fMLP-stimulated cells. The data indicate that, in addition to ARF, elements of the 50-kDa PLD-inducing factors were likely already translocated to the membranes upon stimulation. We propose that ARF, upon stimulation with agonists such as fMLP or phorbol esters, is translocated to the membrane and in concert with other protein components of the 50-kDa fraction enhances PLD activity.
Journal of Biological Chemistry, 1997
We previously reported the cloning of a cDNA encoding human phosphatidylcholine-specific phospholipase D1 (PLD1), an ADP-ribosylation factor (ARF)-activated phosphatidylcholine-specific phospholipase D (Hammond, S. M., Tsung, S., Autschuller, Y., Rudge, S. A., Rose, K., Engebrecht, J., Morris, A. J., and Frohman, M. A. (1995) J. Biol. Chem. 270, 29640 -29643). We have now identified an evolutionarily conserved shorter splice variant of PLD1 lacking 38 amino acids (residues 585-624) that arises from regulated splicing of an alternate exon. Both forms of PLD1 (PLD1a and 1b) have been expressed in Sf9 cells using baculovirus vectors and purified to homogeneity by detergent extraction and immunoaffinity chromatography. PLD1a and 1b have very similar properties. PLD1a and 1b activity is Mg 2؉dependent but insensitive to changes in free Ca 2؉ concentration. Phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate activate PLD1a and 1b but a range of other acidic phospholipids are ineffective. PLD1a and 1b are highly responsive to activation by GTP-␥S-liganded ADP-ribosylation factor-1 (ARF-1) and can also be activated to a lesser extent by three purified RHO family monomeric GTP-binding proteins, RHO A, RAC-1, and CDC42. Activation of PLD1a and 1b by the RHO family monomeric GTP-binding proteins is GTP-dependent and synergistic with ARF-1. Purified protein kinase C-␣ activates PLD1a and 1b in a manner that is stimulated by phorbol esters and does not require ATP. Activation of PLD1a and 1b by protein kinase C-␣ is synergistic with ARF and with the RHO family monomeric GTP-binding proteins, suggesting that these three classes of regulators interact with different sites on the enzyme.
Journal of Biological Chemistry, 1999
Phospholipase D (PLD) has been implicated as a crucial signaling enzyme in secretory pathways. Two 20-kDa guanine nucleotide-binding proteins, Rho and ADPribosylation factor (ARF), are involved in the regulation of secretion and can activate PLD in vitro. We investigated in intact (human adenocarcinoma A549 cells) the role of RhoA and ARF in activation of PLD by phorbol 12-myristate 13-acetate, bradykinin, and/or sphingosine 1-phosphate. To express recombinant Clostridium botulinum C3 exoenzyme (using double subgenomic recombinant Sindbis virus C3), an ADP-ribosyltransferase that inactivates Rho, or dominant-negative Rho containing asparagine at position 19 (using double subgenomic recombinant Sindbis virus Rho19N), cells were infected with Sindbis virus, a novel vector that allows rapid, high level expression of heterologous proteins. Expression of C3 toxin or Rho19N increased basal and decreased phorbol 12-myristate 13-acetate-stimulated PLD activity. Bradykinin or sphingosine 1-phosphate increased PLD activity with additive effects that were abolished in cells expressing C3 exoenzyme or Rho19N. In cells expressing C3, modification of Rho appeared to be incomplete, suggesting the existence of pools that differed in their accessibility to the enzyme. Similar results were obtained with cells scrape-loaded in the presence of C3; however, results with virus infection were more reproducible. To assess the role of ARF, cells were incubated with brefeldin A (BFA), a fungal metabolite that disrupts Golgi structure and inhibits enzymes that catalyze ARF activation by accelerating guanine nucleotide exchange. BFA disrupted Golgi structure, but did not affect basal or agonist-stimulated PLD activity, i.e. it did not alter a rate-limiting step in PLD activation. It also had no effect on Rho-stimulated PLD activity, indicating that RhoA action did not involve a BFA-sensitive pathway. A novel PLD activation mechanism, not sensitive to BFA and involving RhoA, was identified in human airway epithelial cells by use of a viral infection technique that preserves cell responsiveness.
ADP-ribosylation Factor Proteins Mediate Agonist-induced Activation of Phospholipase D
Journal of Biological Chemistry, 1998
The role of small G proteins of the ADP-ribosylation factor (ARF) and Rho families on the activation of phospholipase D (PLD) by platelet-derived growth factor (PDGF) and phorbol esters (PMA) has been investigated. The activation of PLD by PDGF and PMA was blocked by brefeldin A (BFA), an inhibitor of ARF activation, but not by Clostridium botulinum C3 exotoxin, an inhibitor of the activity of Rho. PDGF and PMA, in the presence of GTPgammaS, promoted the association of ARF and RhoA with cell membranes. Cells depleted of ARF and Rho by digitonin permeabilization showed a significant reduction of the activity of phospholipase D. Recombinant ARF was sufficient to restore agonist-induced PLD activity to digitonin-permeabilized, cytoplasm-depleted cells. In contrast, isoprenylated recombinant RhoA had no effects in this reconstitution assay. HIRcB cells were transiently transfected with wild-type and dominant-negative mutants of ARF1 and ARF6. Neither wt-ARF1 nor wt-ARF6 had any effects on agonist-dependent PLD activity. However, dominant-negative ARF1 and ARF6 mutants blocked the stimulation of PLD by PDGF but only partially inhibited the effects of PMA. These results demonstrate that ARF rather than Rho proteins mediate the activation of PLD by PDGF and phorbol esters in HIRcB fibroblasts.
Journal of Leukocyte Biology, 1999
We focus on the mechanisms of regulation of phospholipase D (PLD) activity. Three agonists known to stimulate PLD activity, fMet-Leu-Phe (fMLP), phorbol 12-myristate 13-acetate (PMA) and V 4؉-OOH, induced a differential translocation of ADP-ribosylation factor (ARF), RhoA, and protein kinase C␣ (PKC␣), all cofactors for PLD activation. Whereas fMLP recruited all three proteins to membranes, V 4؉-OOH only elicited RhoA translocation and PMA induced ARF and PKC␣ translocation. Three tyrosine kinases inhibitors, ST-638, methyl 2,5-dihydroxycinnamate, and genistein reduced fMLP-stimulated PLD activity by up to 80%. Furthermore, tyrosine kinase inhibitors reduced the fMLP-induced increase of GTP␥Sstimulated PLD activity in membranes and recruitment of ARF, RhoA, and PKC␣ to the membrane fraction. The data suggest that a tyrosine phosphorylation event is located upstream of the translocation of ARF, RhoA, and PKC␣ in the signaling pathway leading to PLD activation by fMLP. RO 31-8220, a specific inhibitor of PKC, reduced PMA-induced PLD activity by 80% in intact HL60 granulocytes but enhanced fMLP-stimulated PLD activity by 60%. Although PMA alone had no effect on RhoA recruitment to the membrane fraction, in the presence of RO 31-8220 the levels of membrane-bound RhoA were increased. The levels of membrane-bound ARF and PKC␣ were unaffected by RO 31-8220 during PMA stimulation. In contrast, fMLP-induced recruitment of ARF and RhoA was insensitive to RO 31-8220 but PKC␣ translocation was increased. We propose that RhoA translocation may be regulated by PKC in an ATPindependent manner. Furthermore, increased fMLP-induced PKC␣ translocation in the presence of RO 31-8220 may partially account for the synergistic activation of PLD observed when both fMLP and RO 31-8220 are used together in intact HL60 cells.
ADP-ribosylation Factor-dependent Phospholipase D Activation by the M3 Muscarinic Receptor
Journal of Biological Chemistry, 2003
G protein-coupled receptors can potentially activate phospholipase D (PLD) by a number of routes. We show here that the native M 3 muscarinic receptor in 1321N1 cells and an epitope-tagged M 3 receptor expressed in COS7 cells substantially utilize an ADP-ribosylation factor (ARF)-dependent route of PLD activation. This pathway is activated at the plasma membrane but appears to be largely independent of G q/11 , phospholipase C, Ca 2؉ , protein kinase C, tyrosine kinases, and phosphatidyl inositol 3-kinase. We report instead that it involves physical association of ARF with the M 3 receptor as demonstrated by co-immunoprecipitation and by in vitro interaction with a glutathione S-transferase fusion protein of the receptor's third intracellular loop domain. Experiments with mutant constructs of ARF1/6 and PLD1/2 indicate that the M 3 receptor displays a major ARF1-dependent route of PLD1 activation with an additional ARF6-dependent pathway to PLD1 or PLD2. Examples of other G protein-coupled receptors assessed in comparison display alternative pathways of protein kinase C-or ARF6-dependent activation of PLD2.
Regulation of phospholipase D by protein kinase C
Chemistry and physics of lipids, 1996
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity. At least 12 distinct isoforms of PKC have been described so tar; of these enzymes only the e-and fl-isoforms were found to regulate PLD activity. While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators. Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC.