Prediction of adverse cardiac events in emergency department patients with chest pain using machine learning for variable selection (original) (raw)

Risk stratification for prediction of adverse coronary events in emergency department chest pain patients with a machine learning score compared with the TIMI score

International Journal of Cardiology, 2014

Rapid and accurate risk stratification of chest pain patients in the emergency department (ED) plays an important role in guiding appropriate disposition and early intervention so as to rapidly identify those with high risk of adverse coronary events. A conventional risk score for potential acute coronary syndromes (ACS) is the thrombolysis in myocardial infarction (TIMI) score [1]. The TIMI score was suggested to be a useful tool in the ED setting . Recent studies involving an undifferentiated population of ED chest pain patients reported increasing rates of death, acute myocardial infarction (AMI) and revascularization at 30 days with increasing TIMI scores .

A Machine Learning Algorithm for Risk Prediction of Acute Coronary Syndrome (ANGINA) Predicción de riesgo de sufrir un síndrome coronario agudo mediante un algoritmo de machine learning

2020

Background: Chest pain represents one of the most common reasons for consultation in emergency medical services (EMS). A diagnostic strategy using objective and subjective information about the characteristics of chest pain has not been identified yet. Objective: The aim of this study was to evaluate the performance of a machine learning classifier as a tool for prediction of the risk for non-ST-segment elevation acute coronary syndrome (ACS) in patients consulting an EMS due to chest pain. Methods: A total of 161 patients consulting the EMS due to chest pain were analyzed. Both objective and subjective variables about the characteristics of chest pain were recorded using a machine learning classifier. Results: Mean age was 57.43±12 years, 72.7% were men and 17.4% had prior cardiovascular disease. Acute coronary syndrome was present in 57.8% of cases with an incidence of 29.8%. Among the latter 35% required percutaneous coronary intervention and 9.9% myocardial revascularization sur...

Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score

Critical Care, 2012

A key aim of triage is to identify those with high risk of cardiac arrest, as they require intensive monitoring, resuscitation facilities, and early intervention. We aim to validate a novel machine learning (ML) score incorporating heart rate variability (HRV) for triage of critically ill patients presenting to the emergency department by comparing the area under the curve, sensitivity and specificity with the modified early warning score (MEWS). Methods: We conducted a prospective observational study of critically ill patients (Patient Acuity Category Scale 1 and 2) in an emergency department of a tertiary hospital. At presentation, HRV parameters generated from a 5minute electrocardiogram recording are incorporated with age and vital signs to generate the ML score for each patient. The patients are then followed up for outcomes of cardiac arrest or death. Results: From June 2006 to June 2008 we enrolled 925 patients. The area under the receiver operating characteristic curve (AUROC) for ML scores in predicting cardiac arrest within 72 hours is 0.781, compared with 0.680 for MEWS (difference in AUROC: 0.101, 95% confidence interval: 0.006 to 0.197). As for in-hospital death, the area under the curve for ML score is 0.741, compared with 0.693 for MEWS (difference in AUROC: 0.048, 95% confidence interval: -0.023 to 0.119). A cutoff ML score ≥ 60 predicted cardiac arrest with a sensitivity of 84.1%, specificity of 72.3% and negative predictive value of 98.8%. A cutoff MEWS ≥ 3 predicted cardiac arrest with a sensitivity of 74.4%, specificity of 54.2% and negative predictive value of 97.8%. Conclusion: We found ML scores to be more accurate than the MEWS in predicting cardiac arrest within 72 hours. There is potential to develop bedside devices for risk stratification based on cardiac arrest prediction.

Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention

JACC: Cardiovascular Interventions, 2019

OBJECTIVES This study sought to determine whether machine learning can be used to better identify patients at risk for death or congestive heart failure (CHF) rehospitalization after percutaneous coronary intervention (PCI). BACKGROUND Contemporary risk models for event prediction after PCI have limited predictive ability. Machine learning has the potential to identify complex nonlinear patterns within datasets, improving the predictive power of models. METHODS We evaluated 11,709 distinct patients who underwent 14,349 PCIs between January 2004 and December 2013 in the Mayo Clinic PCI registry. Fifty-two demographic and clinical parameters known at the time of admission were used to predict in-hospital mortality and 358 additional variables available at discharge were examined to identify patients at risk for CHF readmission. For each event, we trained a random forest regression model (i.e., machine learning) to estimate the time-to-event. Eight-fold cross-validation was used to estimate model performance. We used the predicted time-to-event as a score, generated a receiver operating characteristic curve, and calculated the area under the curve (AUC). Model performance was then compared with a logistic regression model using pairwise comparisons of AUCs and calculation of net reclassification indices. RESULTS The predictive algorithm identified a high-risk cohort representing 2% of all patients who had an in-hospital mortality of 45.5% (95% confidence interval: 43.5% to 47.5%) compared with a risk of 2.1% for the general population (AUC: 0.925; 95% confidence interval: 0.92 to 0.93). Advancing age, CHF, and shock on presentation were the leading predictors for the outcome. A high-risk group representing 1% of all patients was identified with 30-day CHF rehospitalization of 8.1% (95% confidence interval: 6.3% to 10.2%). Random forest regression outperformed logistic regression for predicting 30-day CHF readmission (AUC: 0.90 vs. 0.85; p ¼ 0.003; net reclassification improvement: 5.14%) and 180-day cardiovascular death (AUC: 0.88 vs. 0.81; p ¼ 0.02; net reclassification improvement: 0.02%). CONCLUSIONS Random forest regression models (machine learning) were more predictive and discriminative than standard regression methods at identifying patients at risk for 180-day cardiovascular mortality and 30-day CHF rehospitalization, but not in-hospital mortality. Machine learning was effective at identifying subgroups at high risk for postprocedure mortality and readmission.

Early Prediction of Cardiogenic Shock Using Machine Learning

Frontiers in Cardiovascular Medicine, 2022

Cardiogenic shock (CS) is a severe condition with in-hospital mortality of up to 50%. Patients who develop CS may have previous cardiac history, but that may not always be the case, adding to the challenges in optimally identifying and managing these patients. Patients may present to a medical facility with CS or develop CS while in the emergency department (ED), in a general inpatient ward (WARD) or in the critical care unit (CC). While different clinical pathways for management exist once CS is recognized, there are challenges in identifying the patients in a timely manner, in all settings, in a timeframe that will allow proper management. We therefore developed and evaluated retrospectively a machine learning model based on the XGBoost (XGB) algorithm which runs automatically on patient data from the electronic health record (EHR). The algorithm was trained on 8 years of de-identified data (from 2010 to 2017) collected from a large regional healthcare system. The input variables include demographics, vital signs, laboratory values, some orders, and specific pre-existing diagnoses. The model was designed to make predictions 2 h prior to the need of first CS intervention (inotrope, vasopressor, or mechanical circulatory support). The algorithm achieves an overall area under curve (AUC) of 0.87 (0.81 in CC, 0.84 in ED, 0.97 in WARD), which is considered useful for clinical use. The algorithm can be refined based on specific elements defining patient subpopulations, for example presence of acute myocardial infarction (AMI) or congestive heart failure (CHF), further increasing its precision when a patient has these conditions. The top-contributing risk factors learned by the model are consistent with existing clinical findings. Our conclusion is that a useful machine learning model can be used to predict the development of CS. This manuscript describes the main steps of the development process and our results.

Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain

Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine

Background A big-data-driven and artificial intelligence (AI) with machine learning (ML) approach has never been integrated with the hospital information system (HIS) for predicting major adverse cardiac events (MACE) in patients with chest pain in the emergency department (ED). Therefore, we conducted the present study to clarify it. Methods In total, 85,254 ED patients with chest pain in three hospitals between 2009 and 2018 were identified. We randomized the patients into a 70%/30% split for ML model training and testing. We used 14 clinical variables from their electronic health records to construct a random forest model with the synthetic minority oversampling technique preprocessing algorithm to predict acute myocardial infarction (AMI)

Machine Learning Based Risk Prediction for Major Adverse Cardiovascular Events

Navigating Healthcare Through Challenging Times

Background: Patients with major adverse cardiovascular events (MACE) such as myocardial infarction or stroke suffer from frequent hospitalizations and have high mortality rates. By identifying patients at risk at an early stage, MACE can be prevented with the right interventions. Objectives: The aim of this study was to develop machine learning-based models for the 5-year risk prediction of MACE. Methods: The data used for modelling included electronic medical records of more than 128,000 patients including 29,262 patients with MACE. A feature selection based on filter and embedded methods resulted in 826 features for modelling. Different machine learning methods were used for modelling on the training data. Results: A random forest model achieved the best calibration and discriminative performance on a separate test data set with an AUROC of 0.88. Conclusion: The developed risk prediction models achieved an excellent performance in the test data. Future research is needed to determ...

Advanced cardiovascular risk prediction in the emergency department: updating a clinical prediction model – a large database study protocol

Diagnostic and Prognostic Research, 2021

Background Patients presenting with chest pain represent a large proportion of attendances to emergency departments. In these patients clinicians often consider the diagnosis of acute myocardial infarction (AMI), the timely recognition and treatment of which is clinically important. Clinical prediction models (CPMs) have been used to enhance early diagnosis of AMI. The Troponin-only Manchester Acute Coronary Syndromes (T-MACS) decision aid is currently in clinical use across Greater Manchester. CPMs have been shown to deteriorate over time through calibration drift. We aim to assess potential calibration drift with T-MACS and compare methods for updating the model. Methods We will use routinely collected electronic data from patients who were treated using TMACS at two large NHS hospitals. This is estimated to include approximately 14,000 patient episodes spanning June 2016 to October 2020. The primary outcome of acute myocardial infarction will be sourced from NHS Digital’s admitte...

Machine learning prediction of mortality in Acute Myocardial Infarction

BMC Medical Informatics and Decision Making

Background Acute Myocardial Infarction (AMI) is the leading cause of death in Portugal and globally. The present investigation created a model based on machine learning for predictive analysis of mortality in patients with AMI upon admission, using different variables to analyse their impact on predictive models. Methods Three experiments were built for mortality in AMI in a Portuguese hospital between 2013 and 2015 using various machine learning techniques. The three experiments differed in the number and type of variables used. We used a discharged patients’ episodes database, including administrative data, laboratory data, and cardiac and physiologic test results, whose primary diagnosis was AMI. Results Results show that for Experiment 1, Stochastic Gradient Descent was more suitable than the other classification models, with a classification accuracy of 80%, a recall of 77%, and a discriminatory capacity with an AUC of 79%. Adding new variables to the models increased AUC in Ex...

An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit

Diagnostics, 2022

Risk stratification at the time of hospital admission is of paramount significance in triaging the patients and providing timely care. In the present study, we aim at predicting multiple clinical outcomes using the data recorded during admission to a cardiac care unit via an optimized machine learning method. This study involves a total of 11,498 patients admitted to a cardiac care unit over two years. Patient demographics, admission type (emergency or outpatient), patient history, lab tests, and comorbidities were used to predict various outcomes. We employed a fully connected neural network architecture and optimized the models for various subsets of input features. Using 10-fold cross-validation, our optimized machine learning model predicted mortality with a mean area under the receiver operating characteristic curve (AUC) of 0.967 (95% confidence interval (CI): 0.963–0.972), heart failure AUC of 0.838 (CI: 0.825–0.851), ST-segment elevation myocardial infarction AUC of 0.832 (C...