Hemispherodextrins, a new class of cyclodextrin derivatives, in capillary electrophoresis (original) (raw)
Related papers
Journal of Chromatography A, 2002
A total of 26 different cyclodextrin (CD) derivatives with different functional groups and degrees of substitution were tested against 35 basic pharmaceutical compounds in an effort to investigate their effectiveness as chiral selectors for enantiomeric separation in capillary electrophoresis (CE). Testing was performed under the same conditions using a low pH buffer (25 mM phosphate buffer at pH|2.5). Five CD derivatives, namely, highly sulfated-b-CD, highly sulfated-a-CD, hydroxypropyl-b-CD (degree of substitution|1), heptakis-(2,6-O-dimethyl)-b-CD, and heptakis(2,3,6-O-trimethyl)-b-CD were identified to be most effective for enantiomeric separations and have a wide range of enantiomeric selectivity towards the model compounds. Over 90% of the model compounds were enantiomerically resolved with the five identified CD derivatives, at a minimum resolution of 0.5. An additional 20 compounds were also tested to demonstrate the validity of the identified CD derivatives. The five CD derivatives were recommended as the starting chiral selectors in developing enantiomeric separation methods by CE.
New cyclodextrin derivatives as chiral selectors in capillary electrophoresis
Fresenius' Journal of Analytical Chemistry, 2001
The separation of three pairs of enantiomeric herbicides has been successfully achieved by capillary electrophoresis at two different pH values in the presence of cyclodextrin derivatives previously synthesized in our laboratory. Two of these derivatives constitute a new class of receptor, the hemispherodextrins, in which a trehalose capping moiety is bonded to β-cyclodextrin. Because of their peculiar structure hemispherodextrins have very promising characteristics and the low receptor concentration required to achieve separation deserves particular interest.
The role of cyclodextrins in chiral capillary electrophoresis
Electrophoresis, 2008
The members of the enantiomeric pairs frequently show rather different biological effects, so their chiral selective synthesis, pharmacological studies and analysis are necessary. CE has unique advantages in chiral analysis. The most frequently used chiral selectors are CDs in this field. This paper gives a short view on the advantages on CE in direct chiral separations, emphasizing the role of CDs. The reason for the broad selectivity spectra of CDs is discussed in detail. The physical background of chiral selective separations is briefly shown in CE. Their interaction mechanisms are shortly defined. The general trend of their use is statistically evaluated. Most frequently used CDs and CD derivatives are characterized. Advantages of ionizable CDs and single-isomer derivatives are shown. The general trend of their use is established.
Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors
Journal of Chromatography A, 2000
This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.
Fresenius' journal of analytical chemistry, 2001
The enantioseparation capabilities of three different functionalized beta-cyclodextrins, two sulfated beta-cyclodextrins with 4 and 15 nominal degrees of substitution and a phosphated beta-cyclodextrin with 8 degrees of substitution, were compared. While anodic detection was used with both sulfated cyclodextrins, the phosphated cyclodextrin required cathodic detection suggesting either lower ionization of the phosphated cyclodextrin or generally lower affinity of the analytes for the phosphated cyclodextrin. The effects of several experimental parameters were evaluated with respect to enantioseparation. The degrees of substitution of the cyclodextrin, pH of the background electrolyte as well as the concentration of the functionalized beta-cyclodextrin, each had a significant influence on the successful enantiomeric separation of the chiral drugs investigated.
Single isomer cyclodextrins as chiral selectors in capillary electrophoresis
Journal of Chromatography A
Since decades, cyclodextrins are one of the most powerful selectors in chiral capillary electrophoresis for the enantioseparation of diverse organic compounds. This review concerns papers published over the last decade (from 2009 until nowadays), dealing with the capillary electrophoretic application of single isomer cyclodextrin derivatives in chiral separations. Following a brief overview of their synthetic approaches, the inventory of the neutral, negatively and positively charged (including both permanently ionic and pH-tunable ionizable substituents) and zwitterionic CD derivatives is presented, with insights to underlying structural aspects by NMR spectroscopy and molecular modeling. CE represents an ideal tool to study the weak, non-covalent supramolecular interactions. The published methods are reviewed in the light of enantioselectivity, enantiomer migration order and the fine-tuning of enantiodiscrimination by the substitution pattern of the single entity selector molecules, which is hardly possible for their randomly substituted counterparts. All the reviewed publications herein support that cyclodextrin-based chiral capillary electrophoresis seems to remain a popular choice in pharmaceutical and biomedical analysis.
Fresenius Journal of Analytical Chemistry, 2001
The enantioseparation capabilities of three different functionalized β-cyclodextrins, two sulfated β-cyclodextrins with 4 and 15 nominal degrees of substitution and a phosphated β-cyclodextrin with 8 degrees of substitution, were compared. While anodic detection was used with both sulfated cyclodextrins, the phosphated cyclodextrin required cathodic detection suggesting either lower ionization of the phosphated cyclodextrin or generally lower affinity of the analytes
Journal of Chromatography A, 1997
Enantioseparation in capillary electrophoresis using 2-O-(2-hydroxybutyl)-â-CD as a chiral selector The resolving ability of 2-O-(2-hydroxybutyl)-b-CD (HB-b-CD) with different degrees of substitution (DS = 2.9 and 4.0) as a chiral selector in CZE is reported in this work. Fourteen chiral drugs belonging to different classes of compounds of pharmaceutical interest such as b-agonists, antifungal agents, ageneric agents, etc., were resolved. The effects of the DS of HB-b-CD on separations were also investigated. The chiral resolution (R s) was strongly influenced by the concentrations of the CD derivative, the BGE, and the pH of the BGE. Under the conditions of 50 mmol/L Tris-phosphate buffer at pH 2.5 containing 5 mmol/L HB-b-CD, all 14 analytes were separated. The very low concentration necessary to obtain separation was particularly impressive. The DS had a significant effect on the resolution of the chiral drugs and the ionic strength of the separation media; hence, the use of a well-characterized CD derivative is crucial.
Use of cationic cyclodextrin for enantioseparation by capillary electrophoresis
Journal of Chromatography A, 1998
The usability of 2-hydroxy-3-trimethylammoniopropyl-β-cyclodextrin for chiral discrimination of various basic and acidic substances is described. The dependence of chiral separation on cyclodextrin (CD) concentration and pH value was investigated. Altering the pH value the migration order of the enantiomers of acidic analytes could be changed. Due to the quaternary ammonium structure of the CD molecule, a reversal of the electroosmotic