Simulations of a Cold Front by Cloud-Resolving, Limited-Area, and Large-Scale Models, and a Model Evaluation Using In Situ and Satellite Observations (original) (raw)
2000, Monthly Weather Review
Abstract
The Global Energy and Water Cycle Experiment has identified the poor representation of clouds in atmospheric general circulation models as one of the major impediments for the use of these models in reliably predicting future climate change. One of the most commonly encountered types of cloud system in midlatitudes is that associated with cyclones. The purpose of this study is to investigate the representation of frontal cloud systems in a hierarchy of models in order to identify their relative weaknesses. The hierarchy of models was classified according to the horizontal resolution: cloud-resolving models (5-km resolution), limited-area models (20-km resolution), coarse-grid single-column models (300 km), and an atmospheric general circulation model (Ͼ100 km). The models were evaluated using both in situ and satellite data.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (31)
- Benoit, R., M. Desgagne, P. Pellerin, S. Pellerin, and Y. Chartier, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wide band atmospheric model suited for finescale processes stud- ies and simulation. Mon. Wea. Rev., 125, 2382-2415.
- Browning, K. A., 1990: Organization of clouds and precipitation in extra-tropical cyclones. Extratropical Cyclones: The Erik Pal- me ´n Memorial Volume, C. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129-153. , and Coauthors, 1993: The GEWEX Cloud System Study (GCSS). Bull. Amer. Meteor. Soc., 74, 387-399.
- Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovorticies. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401-2426.
- Clough, S. A., and R. A. A. Frank, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117, 1057-1080.
- Eppel, D. P., H. Kapiza, M. Claussen, D. Jacob, W. Koch, L. Levkov, H. T. Mengelkamp and N. Werrmann, 1995: The non-hydrostatic mesoscale model GESIMA. Part II: Parameterizations and ap- plications. Beitr. Phys. Atmos., 68, 15-41.
- Flatau, P. J., G. J. Tripoli, J. Verlinde, and W. R. Cotton, 1989: The CSU RAMS cloud microphysics module: General theory and code documentation. Dept. of Atmospheric Science Paper 451, Colorado State University, 88 pp. [Available from Dept. of At- mospheric Science, Colorado State University, Fort Collins, CO 80523.]
- Frank, W. L., and C. Cohen, 1985: Properties of tropical cloud en- sembles estimated using a cloud model and an observed updraft population. J. Atmos. Sci., 42, 1911-1928. , and , 1987: Simulation of tropical convective systems. Part 1: A cumulus parameterization. J. Atmos. Sci., 44, 3787- 3799.
- Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and Serrano, 1997: 1 ERA description. ECMWF Re-Analysis Project Rep. Series, 72 pp.
- Gultepe, I., D. O'C. Starr, A. J. Heymsfield, T. Uttal, T. P. Ackerman, and D. L. Westphal, 1995: Dynamic characteristics of cirrus clouds from aircraft and radar observations in micro-and meso- ␥ scales. J. Atmos. Sci., 52, 4060-4078.
- Kapitza, H., and D. P. Eppel, 1992: The non-hydrostatic mesoscale model GESIMA. Part I: Dynamic equations and tests. Beitr. Phys. Atmos., 65, 129-146.
- Karstens, U., R. Nolte-Holube, and B. Rockel, 1996: Calculation of the water budget over the Baltic Sea catchment area using the regional forecast model REMO for June 1993. Tellus, 48A, 684- 692.
- Katzfey, J. J., and B. F. Ryan, 1997: Modification of the thermody- namic structure of the lower troposphere by the evaporation of precipitation: A GEWEX cloud system study. Mon. Wea. Rev., 125, 1431-1446. , and , 2000: Midlatitude frontal clouds: GCM-scale mod- eling implications. J. Climate, 13, 2729-2745.
- King, W. D., 1982: Location and extent of supercooled regions in deep stratiform cloud in western Victoria. Aust. Meteor. Mag., 30, 81-88.
- Kong, F., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.-Ocean, 35, 257-291.
- R Y A N E T A L .
- Kuo, H. L., 1974: Cumulus convection in weak and strong tropical disturbances. J. Atmos. Sci., 31, 1232-1240.
- Lau, N.-C., and M. W. Crane, 1995: A satellite view of the synoptic- scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 1984-2006
- Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D me- soscale numerical studies of cirrus and stratus clouds by their time and space evolution. Contrib. Atmos. Phys., 65, 35-58.
- Lohmann, U., and E. Roeckner, 1995: The influence of cirrus cloud- radiative forcing on climate and climate sensitivity in a general circulation model. J. Geophys. Res., 100, 16 305-16 323. , N. McFarlane, L. Levkov, K. Abdella, and F. Albers 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and a nudging technique. J. Climate, 12, 438-461.
- Majewski, D., 1991: The Europa-Model of the Deutscher Wetter- dienst. Proc. Seminar on Numerical Methods in Atmospheric Models, Vol. 2, Reading, United Kingdom, ECMWF, 147-191.
- McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix, and L. D. Rotstayn, 1993: The CSIRO 9-level atmospheric general cir- culation model. CSIRO Division of Atmospheric Research, Tech. Paper 26, 89 pp. [Available from CSIRO Atmospheric Research, PMB1, Aspendale, VIC 3195, Australia.]
- Moncrieff, M. W., and W. K. Tao, 1999: Cloud resolving models. Global Energy and Water Cycles, K. A. Browning and R. J. Gurney, Eds., Cambridge University Press, 200-212.
- Randall, D. A., K.-M. Xu, R. J. Sommerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links be- tween observations and climate models. J. Climate, 9, 1683- 1697.
- Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2-20.
- Rotstayn, L. D., 1997: A physically based scheme for treatment of stratiform clouds and precipitation in large-scale models. I: De- scription and evaluation of microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227-1282.
- Ryan, B. F., W. D. King, and S. C. Mossop, 1985a: The frontal transition zone and microphysical properties of associated clouds. Quart. J. Roy. Meteor. Soc., 111, 479-493.
- K. J. Wilson, J. R. Garratt, and R. K. Smith, 1985b: Cold Fronts Research Programme: Progress, future plans, and research di- rections. Bull. Amer. Meteor. Soc., 66, 1116-1122. , , and E. J. Zipser, 1989: Modifications of the thermody- namic structure of the lower troposphere by the evaporation of precipitation ahead of a cold front. Mon. Wea. Rev., 117, 138- 153.
- Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 1641-1657.
- Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800. , 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040-3061.
- Tremback, C., G. Tripoli, R. Arritt, W. R. Cotton, and R. A. Pielkie, 1986: The Regional Atmospheric Modeling System. Proceedings of an International Conference on Development Applications of Computer Techniques Environmental Studies, P. Zannetti, Ed., Computational Mechanics Publication, Rewood Burn Ltd., 601- 607.
- Zang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate sim- ulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.- Ocean, 33, 406-446.