Urine NMR metabolomics analysis of breastfeeding biomarkers during and after pregnancy in a large prospective cohort study (original) (raw)
Related papers
PLoS ONE, 2012
This study aims to identify novel markers for gestational diabetes (GDM) in the biochemical profile of maternal urine using NMR metabolomics. It also catalogs the general effects of pregnancy and delivery on the urine profile. Urine samples were collected at three time points (visit V1: gestational week 8-20; V2: week 2862; V3:10-16 weeks post partum) from participants in the STORK Groruddalen program, a prospective, multiethnic cohort study of 823 healthy, pregnant women in Oslo, Norway, and analyzed using 1 H-NMR spectroscopy. Metabolites were identified and quantified where possible. PCA, PLS-DA and univariate statistics were applied and found substantial differences between the time points, dominated by a steady increase of urinary lactose concentrations, and an increase during pregnancy and subsequent dramatic reduction of several unidentified NMR signals between 0.5 and 1.1 ppm. Multivariate methods could not reliably identify GDM cases based on the WHO or graded criteria based on IADPSG definitions, indicating that the pattern of urinary metabolites above micromolar concentrations is not influenced strongly and consistently enough by the disease. However, univariate analysis suggests elevated mean citrate concentrations with increasing hyperglycemia. Multivariate classification with respect to ethnic background produced weak but statistically significant models. These results suggest that although NMR-based metabolomics can monitor changes in the urinary excretion profile of pregnant women, it may not be a prudent choice for the study of GDM.
Nutrients, 2018
Human milk provides essential substrates for the optimal growth and development of a breastfed infant. Besides providing nutrients to the infant, human milk also contains metabolites which form an intricate system between maternal lifestyle, such as the mother’s diet and the gut microbiome, and infant outcomes. This study investigates the variation of these human milk metabolites from five different countries. Human milk samples (n = 109) were collected one month postpartum from Australia, Japan, the USA, Norway, and South Africa and were analyzed by nuclear magnetic resonance. The partial least squares discriminant analysis (PLS-DA) showed separation between either maternal countries of origin or ethnicities. Variation between countries in concentration of metabolites, such as 2-oxoglutarate, creatine, and glutamine, in human milk, between countries, could provide insights into problems, such as mastitis and/or impaired functions of the mammary glands. Several important markers of ...
Metabolites, 2022
The ability of metabolomics to provide a snapshot of an individual’s metabolic state makes it a very useful technique in neonatology for investigating the complex relationship between nutrition and the state of health of the newborn. Through an 1H-NMR metabolomics analysis, we aimed to investigate the metabolic profile of newborns by analyzing both urine and milk samples in relation to the birth weight of neonates classified as AGA (adequate for the gestational age, n = 51), IUGR (intrauterine growth restriction, n = 14), and LGA (large for gestational age, n = 15). Samples were collected at 7 ± 2 days after delivery. Of these infants, 42 were exclusively breastfed, while 38 received mixed feeding with a variable amount of commercial infant formula (less than 40%) in addition to breast milk. We observed a urinary spectral pattern for oligosaccharides very close to that of the corresponding mother’s milk in the case of exclusively breastfed infants, thus mirroring the maternal phenot...
Breastmilk Metabolomics: Bridging the Gap between Maternal Nutrition and Infant Health Outcomes
KIMIKA, 2017
Breastmilk (BM) is the primary source of nutrition for the newborn infant and its first six months of life. Although the importance of BM in the proper growth and development of infants has previously been recognized in various research studies, it was not until various metabolites were probed in BM that researchers discovered the various beneficial effects of BM beyond its nutritive value. Metabolomics has emerged as a discipline which aims to comprehensively profile various metabolites in food and biological fluids. Although still in its incipient stages, BM metabolomics has provided invaluable insights into the chemical interaction between mother and infant. NMR-and MS-based techniques have made it possible to explore the metabolome of BM and link it to various aspects of maternal phenotype and nutrition and breastfed infant health outcomes. In addition, recent developments in analytical approaches for BM metabolite analysis and metabolomic data analysis have allowed researchers to increase the coverage of detected metabolites using multiple platforms and have supported its functional characterization which aids in investigation of the clinical and biological importance of metabolites. These advancements can potentially aid in the development of strategies to promote healthy feeding practices for infants or novel therapeutic and nutrition advances in pediatric research.
Lactation is associated with altered metabolomic signatures in women with gestational diabetes
Diabetologie und Stoffwechsel, 2016
Aims/hypothesis Lactation for >3 months in women with gestational diabetes is associated with a reduced risk of type 2 diabetes that persists for up to 15 years postpartum. However, the underlying mechanisms are unknown. We examined whether in women with gestational diabetes lactation for >3 months is associated with altered metabolomic signatures postpartum. Methods We enrolled 197 women with gestational diabetes at a median of 3.6 years (interquartile range 0.7-6.5 years) after delivery. Targeted metabolomics profiles (including 156 metabolites) were obtained during a glucose challenge test. Comparisons of metabolite concentrations and ratios between women who lactated for >3 months and women who lactated for ≤3 months or not at all were performed using linear regression with adjustment for age and BMI at the postpartum visit, time since delivery, and maternal education level, and correction for multiple testing. Gaussian graphical modelling was used to generate metabolite networks. Results Lactation for >3 months was associated with a higher total lysophosphatidylcholine/total phosphatidylcholine ratio; in women with short-term follow-up, it was also associated with lower leucine concentrations and a lower total branchedchain amino acid concentration. Gaussian graphical modelling identified subgroups of closely linked metabolites within phosphatidylcholines and branched-chain amino acids that were affected by lactation for >3 months and have been linked to the pathophysiology of type 2 diabetes in previous studies. Conclusions/interpretation Lactation for >3 months in women with gestational diabetes is associated with changes in the metabolomics profile that have been linked to the early pathogenesis of type 2 diabetes.
The Journal of nutrition, 2015
Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation. The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants. (1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infan...
Urine Metabolome during Parturition
Metabolites
In recent years, some studies have described metabolic changes during human childbirth labor. Metabolomics today is recognized as a powerful approach in a prenatal research context, since it can provide detailed information during pregnancy and it may enable the identification of biomarkers with potential diagnostic or predictive. This is an observational, longitudinal, prospective cohort study of a total of 51 serial urine samples from 15 healthy pregnant women, aged 29–40 years, which were collected before the onset of labor (out of labor, OL). In the same women, during labor (in labor or dilating phase, IL-DP). Samples were analyzed by hydrophilic interaction ultra-performance liquid chromatography coupled with mass spectrometry (HILIC-UPLC-MS), a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. This method was used to identify the potential biomarkers. The top 20 most discrim...
Exploring human breast milk composition by NMR-based metabolomics
Natural Product Research, 2014
The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &