Magnetofluorescent nanoparticles for bimodal detection of breast cancer cells (original) (raw)
Related papers
Fluorescent magnetic nanoparticles for biomedical applications
Journal of Materials Chemistry, 2011
The simultaneous combination of optical and magnetic resonance imaging (MRI) would greatly benefit in vivo disease diagnosis as well as in situ monitoring of living cells. In order to design dual detection of cells involving simultaneous imaging by fluorescent microscopy and MRI, nanoparticles with two reporters, a fluorescent dye and a superparamagnetic core, included in one particle were synthesized and characterized. The g-Fe 2 O 3 nanoparticles obtained by coprecipitation and oxidation were coated with silica (SiO 2 ) or carboxymethyl chitosan (CMCS) and labeled with fluorescein isothiocyanate (FITC). The fluorescent label was covalently bound to the nanoparticles and was not quenched by the iron oxide core. The nanoparticles successfully labeled rat mesenchymal stem cells (rMSCs) in vitro. Relaxation time measurements found large amounts of iron inside the cells with FITC-labeled g-Fe 2 O 3 -SiO 2 -AP nanoparticles. Both MR and fluorescent imaging of a rat brain with implanted rMSCs labeled with FITC-labeled CMCS-modified silica-coated g-Fe 2 O 3 nanoparticles were performed.
Scientific reports, 2017
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferat...
Nanotechnology, 2008
We synthesized novel fluorescent magnetic silica nanoparticles (FMSNPs) containing large magnetic components for biomedical application. By employing assemblies of magnetic nanoparticles as kernels against FMSNPs, both the saturation of magnetization and the magnetic resonance (MR) signal intensity were significantly enhanced. Furthermore, the cellular binding of FMSNPs was improved by introducing a positive charge on the surface of the FMSNPs, and fluorescent dyes on the surface of FMSNPs enable optical imaging of sub-cellular regions.
Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles
Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs) with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe 3 O 4 @SiO 2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC), mediated by assembled shells of the cationic polyelectrolyte, polyethyleneimine (PEI). The Fe 3 O 4 functionalized particles were then preliminary evaluated as fluorescent and magnetic probes by performing studies in which neuroblast cells have been contacted with these nanomaterials.
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.
Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems
Materials Science and Engineering: C, 2019
Multifunctional nanoparticles have emerged as an outstanding candidate for a new generation of biomedical applications, mainly due to their remarkable properties and biocompatibility. Individual reports on multi-metal, semiconducting and superparamagnetic nanoparticles (SPIONs), elucidating on each's unique intrinsic properties, have demonstrated that the biological application of such materials is highly dependent of their size, shape, surface nature and core nature. However, reviews combining nanoparticles with multiple properties, as fluorescence and paramagnetism, as well as, biocompatibility, toxicology and biodegradability are yet seldom. This review highlights the highest output advances, of the last decade, on synthetic procedures for the design of multifunctional magneto-luminescent hybrid nanosystems based on quantum dots, SPIONs and mesoporous silica nanoparticles, as well as, surface modifications and their role for biological applications. 1.1. Quantum dots Concerning fluorescent nanomaterials, quantum dots (QDs) comprised of inorganic elements of groups II-VI or III-V, are very promising, mainly due to their unique optical properties [36,45] that arise from the confinement of charge carriers' energy states through the physical size reduction of these nanoparticles. Briefly, a decrease in the size,
Targeted Fluoromagnetic Nanoparticles for Imaging of Breast Cancer
2016
To achieve simultaneous imaging and therapy potentials, targeted fluoromagnetic nanoparticles were synthesized and examined in human breast cancer MCF-7 cells. Methods: Fe 3 O 4 nanoparticles (NPs) were synthesized through thermal decomposition of Fe(acac) 3. Then, magnetic nanoparticles (MNPs) modified by dopamine-poly ethylene glycol (PEG)-NH 2 ; finally, half equivalent fluorescein isothiocyanate (FITC) and half equivalent folic acid were conjugated to one equivalent of it. The presence of Fe 3 O 4-DPA-PEG-FA/FITC in the folate receptor (FR) positive MCF-7 cells was determined via fluorescent microscopy to monitor the cellular interaction of MNPs. Results: FT-IR spectra of final compound confirmed existence of fluorescein on folic acid grafted MNPs. The Fe 3 O 4-DPA-PEG-FA/FITC NPs, which displayed a size rang about 30-35 nm using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were able to actively recognize the FRpositive MCF-7 cells, but not the FR-negative A549 cells. Conclusion: The uniform nano-sized Fe 3 O 4-DPA-PEG-FA/FITC NPs displayed great potential as theranostics and can be used for targeted imaging of various tumors that overexpress FR.
Advanced Functional Materials, 2011
Nanoparticles with both effi cient light emission and strong magnetization (MFSNPs) are fabricated by one-pot, surfactant-free sol-gel reaction of tetraethoxysilane and silole-functionalized siloxane in the presence of citrate-coated magnetite nanoparticles. The MFSNPs are uniformly sized with smooth surfaces. They possess core-shell structures and exhibit appreciable surface charges and hence good colloidal stability. The MFSNPs are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of the suspension of MFSNPs in ethanol gives strong green emission at 486 nm, thanks to the novel aggregation-induced emission characteristics of the silole aggregates in the hybrid nanoparticles. The MFSNPs can selectively stain the cytoplasmic regions of the living cells. Addition of (3-aminopropyl)triethoxysilane during the fabrication of MFSNPs has generated MFSNP-NH 2 with numerous amino groups decorated on the surface, enabling the nanoparticles to immobilize bovine serum albumin effi ciently.