Dark solitons in cigar-shaped Bose-Einstein condensates in double-well potentials (original) (raw)

We study the statics and dynamics of dark solitons in a cigar-shaped Bose-Einstein condensate confined in a double-well potential. Using a mean-field model with a non-cubic nonlinearity, appropriate to describe the dimensionality crossover regime from one to three dimensional, we obtain branches of solutions in the form of single-and multiple-dark soliton states, and study their bifurcations and stability. It is demonstrated that there exist dark soliton states which do not have a linear counterpart and we highlight the role of anomalous modes in the excitation spectra. Particularly, we show that anomalous mode eigenfrequencies are closely connected to the characteristic soliton frequencies as found from the solitons' equations of motion, and how anomalous modes are related to the emergence of instabilities. We also analyze in detail the role of the height of the barrier in the double well setting, which may lead to instabilities or decouple multiple dark soliton states.