Synchronization in a population of globally coupled chaotic oscillators (original) (raw)
Abstract
PACS. 05.45+b -Theory and models of chaotic systems. PACS. 64.60Cn -Order-disorder and statistical mechanics of model systems.
Figures (5)
Fig. 1. — Variance of the mean field X vs. coupling parameter ¢ for different topologies of the Roéssler system (a = 0.15,wo = 1 for curves a) and 6); a = 0.25, wo = 0.97 for curves c) and d)) and different distributions of natural frequencies (Aw = 0 for curves a) and c); Aw = 0.02 for curves b) and d)). The number of oscillators is N = 5000 for curves a)-d). Curve e) differs from curve d) only in the size of the ensemble (N = 20000); it demonstrates the finite-size effect on the order parameter.
Fig. 2. — Projections of the phase portraits of the Réssler oscillators (left column) and of the mean fields X = (xi), Y = (y) in an ensemble of N = 5000 oscillators. a) Phase-coherent Réssler attractor, w) = 1, a= 0.15. b) Mean field in the ensemble of oscillators a) with Gaussian distribution of frequencies Aw = 0.02 and coupling ¢ = 0.1. c) Funnel attractor wo = 0.97, a = 0.25. d) Mean field in the ensemble of oscillators c) with Gaussian distribution of frequencies Aw = 0.02 and coupling e=0.15.
A. S. PIKOVSKY et al.: SYNCHRONIZATION IN A POPULATION OF GLOBALLY ETC.
Fig. 4. — Successive maxima (upper panel) and observed frequencies, eq. (5) (bottom panel) vs. natural frequencies in the ensemble of coupled phase-coherent Réssler systems of fig. 2a). a) The coupling € = 0.05 is slightly below the transition threshold, the observed frequencies 92 are proportional to the natural frequencies w. b) Above threshold (€ = 0.1) most of the oscillators form a coherent cluster (plateau in the bottom panel), while the amplitudes remain chaotic (with the exception of the period-3 window for w = 0.97).
A. S. PIKOVSKY et al.: SYNCHRONIZATION IN A POPULATION OF GLOBALLY ETC. Fig. 5. — The observed frequency {2 in the ensemble of coupled funnel attractors with parameters of fig. 2d). The upper panel shows the deviation © from the linear fit: the tendency to synchronization is clearly seen in this panel, although it is rather small.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (24)
- Kuramoto V., Chemical Oscillations, Waves and Turbulence (Springer, Berlin) 1984.
- Hadley P., Beasley M. R. and Wiesenfeld K., Phys. Rev. B, 38 (1988) 8712.
- Sompolinsky H., Golomb D. and Kleinfeld D., Phys. Rev. A, 43 (1991) 6990.
- Wiesenfeld K., Bracikowski C., James G. and Roy R., Phys. Rev. Lett., 65 (1990) 1749.
- Strogatz S. H., Marcus C. M., Westervelt R. M. and Mirollo R. E., Physica D, 36 (1989) 23.
- Golomb D., Hansel D., Shraiman B. and Sompolinsky H., Phys. Rev. A, 45 (1992) 3516.
- Nichols S. and Wiesenfeld K., Phys. Rev. A, 45 (1992) 8430; Strogatz S. H. and Mirollo R. E., Phys. Rev. E, 47 (1993) 220.
- Pikovsky A. S., Rateitschak K. and Kurths J., Z. Phys. B, 95 (1994) 541.
- Han S. K., Kurrer C. and Kuramoto Y., Phys. Rev. Lett., 75 (1995) 3190.
- Wiesenfeld K. and Hadley P., Phys. Rev. Lett., 62 (1989) 1335;
- Hakim V. and Rappel W.-J., Phys. Rev. A, 46 (1992) R7347; Nakagawa N. and Kuramoto Y., Prog. Theor. Phys., 89 (1993) 313.
- Kuramoto Y., Prog. Theor. Phys. Suppl., 79 (1974) 223; in International Symposium on Math- ematical Problems in Theoretical Physics, edited by H. Araki (Springer, New York, N.Y.) 1975.
- Sakaguchi H., Shinomoto S. and Kuramoto Y., Prog. Theor. Phys., 77 (1987) 1005;
- Daido H., Prog. Theor. Phys., 75 (1986) 1460;
- Daido H., J. Stat. Phys., 60 (1990) 753.
- Rosenblum M., Pikovsky A. and Kurths J., Phys. Rev. Lett., 76 (1996) 1804.
- Rössler O. E., Phys. Lett. A, 57 (1976) 397.
- Crutchfield J. et al., Phys. Lett. A, 76 (1980) 1.
- Stone E. F., Phys. Lett. A, 163 (1992) 367.
- Pikovsky A. S., Sov. J. Commun. Technol. Electron., 30 (1985) 1970.
- Sakaguchi H., Prog. Theor. Phys., 79 (1988) 39; Bonilla L. L., Neu J. C. and Spigler R., J. Stat. Phys., 67 (1992) 313.
- Brunnet L., Chaté H. and Manneville P., Physica D, 78 (1994) 141.
- Desai R. C. and Zwanzig R., J. Stat. Phys., 19 (1978) 1.
- Stratonovich R. L., Topics in the Theory of Random Noise (Gordon and Breach, New York, N.Y.) 1963.