Importance of the extracellular and cytoplasmic/transmembrane domains of the haemagglutinin protein of rinderpest virus for recovery of viable virus from cDNA copies (original) (raw)

The E2 signal sequence of rubella virus remains part of the capsid protein and confers membrane association in vitro

Journal of virology, 1990

The capsid (C) protein of rubella virus is translated from a 24S subgenomic mRNA as the first part of a polyprotein containing all three structural proteins of the virus. It is separated from the following protein (E2) by signal peptidase, which cleaves after the E2 signal sequence. We raised an antipeptide antiserum directed against the signal sequence and used the antiserum to show that this sequence is still a part of the C protein in the mature virion. Furthermore, we also showed that, when the C protein is synthesized by in vitro transcription and translation, the resultant protein is membrane associated. This association is not seen with a variant C protein which lacks the signal sequence, and a normally soluble protein (dihydrofolate reductase) becomes membrane associated when the signal sequence is placed at its carboxy terminus.

Rinderpest virus H protein: role in determining host range in rabbits

The Journal of general virology, 2002

A major molecular determinant of virus host-range is thought to be the viral protein required for cell attachment. We used a recombinant strain of Rinderpest virus (RPV) to examine the role of this protein in determining the ability of RPV to replicate in rabbits. The recombinant was based on the RBOK vaccine strain, which is avirulent in rabbits, carrying the haemagglutinin (H) protein gene from the lapinized RPV (RPV-L) strain, which is pathogenic in rabbits. The recombinant virus (rRPV-lapH) was rescued from a cDNA of the RBOK strain in which the H gene was replaced with that from the RPV-L strain. The recombinant grew at a rate equivalent to the RPV-RBOK parental virus in B95a cells but at a lower rate than RPV-L. The H gene swap did not affect the ability of the RBOK virus to act as a vaccine to protect cattle against virulent RPV challenge. Rabbits inoculated with RPV-L became feverish, showed a decrease in body weight gain and leukopenia. High virus titres and histopathologic...

Analysis of the fusion protein gene of the porcine rubulavirus LPMV: comparative analysis of paramyxovirus F proteins

Virus genes, 1997

Complementary DNA clones representing the fusion (F) protein gene of the porcine rubulavirus LPMV were isolated and sequenced. The F gene was found to be 1,845 nucleotides long containing one long open reading frame capable of encoding a protein of 541 amino acids. The cleavage motif for F0 into F1 and F2 is His-Arg-Lys-Lys-Arg. A sequence comparison and a phylogenetic analysis was performed in order to identify possible functional domains of paramyxovirus fusion proteins and also to classify the porcine rubulavirus. The F gene of LPMV is most closely related to the human mumps virus and simian virus type 5 F genes, and is therefore classified into the rubulavirus genus. A coding region for a small hydrophobic protein was however not found between the F and hemagglutinin-neuraminidase (HN) genes as previously found in both SV5 and mumps.