The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites (original) (raw)
2002, Journal of Cell Biology
he X-linked mammalian inhibitor of apoptosis protein (XIAP) has been shown to bind several partners. These partners include caspase 3, caspase 9, DIABLO/ Smac, HtrA2/Omi, TAB1, the bone morphogenetic protein receptor, and a presumptive E2 ubiquitin-conjugating enzyme. In addition, we show here that XIAP can bind to itself. To determine which of these interactions are required for it to inhibit apoptosis, we generated point mutant XIAP proteins and correlated their ability to bind other proteins with their ability to inhibit apoptosis. Ѩ RING point mutants T of XIAP were as competent as their full-length counterparts in inhibiting apoptosis, although impaired in their ability to oligomerize with full-length XIAP. Triple point mutants, unable to bind caspase 9, caspase 3, and DIABLO/HtrA2/ Omi, were completely ineffectual in inhibiting apoptosis. However, point mutants that had lost the ability to inhibit caspase 9 and caspase 3 but retained the ability to inhibit DIABLO were still able to inhibit apoptosis, demonstrating that IAP antagonism is required for apoptosis to proceed following UV irradiation. *Abbreviations used in this paper: IAP, inhibitor of apoptosis protein; BIR, baculoviral IAP repeat; TNF, tumor necrosis factor; TRAF, TNF receptor associated factors; XIAP, X-linked mammalian inhibitor of apoptosis protein.