How the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment (original) (raw)

Molecular Modeling and Simulation of Membrane Lipid-Mediated Effects on GPCRs

Current Medicinal Chemistry, 2012

Functioning of G protein-coupled receptors (GPCRs) is tightly linked to the membrane environment, but a molecular level understanding of the modulation of GPCR by membrane lipids is not available. However, specific receptor-lipid interactions as well as unspecific effects mediated by the bulk properties of the membrane (thickness, curvature, etc.) have been proposed to be key regulators of GPCR modulation. In this review, we examine computational efforts made towards modeling and simulation of (i) the complex behavior of membrane lipids, (ii) membrane lipid-GPCR interactions as well as membrane lipid-mediated effects on GPCRs and (iii) GPCR oligomerization in a native-like membrane environment. We propose that, from the perspective of computational modeling, all three of these components need to be addressed in order to achieve a deeper understanding of GPCR functioning. Presently, we are able to simulate numerous lipid properties applying advanced computational techniques, although some barriers, such as the time-length of these simulations, need to be overcome. Implementing three-dimensional structures of GPCRs in such validated membrane systems can give novel insights in membrane-dependent receptor modulation and formation of higher order receptor complexes. Finally, more realistic GPCR-membrane models would provide a very useful tool in studying receptor behavior and its modulation by small drug-like ligands, a relevant issue for drug discovery.

Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches

Molecules, 2020

Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on ...

Biophysical characterization of G-protein coupled receptor–peptide ligand bindingThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process

Biochemistry and Cell Biology, 2011

G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular responses to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GPCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques that have been successfully used for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy, solid-state NMR, X-ray diffraction, fluorescence spectroscopy and single-molecule fluorescence methods, flow cytometry, surface plasmon resonance, isothermal titration calorimetry, and atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction.

A Closer Look into G Protein Coupled Receptor Activation: X-Ray Crystallography and Long-Scale Molecular Dynamics Simulations

Current Medicinal Chemistry, 2012

G protein coupled receptors (GPCRs) are a large eukaryotic protein family of transmembrane receptors that react to a signal coming from the extracellular environment to generate an intracellular response through the activation of a signal transduction pathway mediated by a heterotrimeric G protein. Their diversity, dictated by the multiplicity of stimuli to which they respond and by the variety of intracellular signalling pathways they activate, make them one of the most prominent families of validated pharmacological targets in biomedicine. In recent years, major breakthroughs in structure determination of GPCRs have given new stimuli to the exploration of the biology of these proteins, providing a structural basis to understand the molecular origin of GPCR mechanisms of action. Based on the information coming from these structural studies, a number of recent in silico investigations used molecular dynamics (MD) simulations to contribute to our knowledge of GPCRs. In this review, we will focus on investigations that, taking advantage of the tremendous progress in both hardware and software, made testable hypotheses that have been validated by subsequent structural studies. These stateof-the-art molecular simulations highlight the potential of microsecond MD simulations as a valuable tool in GPCR structural biology and biophysics.

Influence of Lipid Composition on the Structural Stability of G-Protein Coupled Receptor

Chemical and Pharmaceutical Bulletin, 2013

2 Adrenergic receptor (β 2 AR) is a kind of G-protein coupled receptors (GPCRs) which transduce a wide range of extracellular signals into intracellular messages responsible for the regulation of diverse cell functions. Because of their functional ubiquity, GPCR is one of the most important drug targets in pharmaceutical industry. Although recent crystallographic studies provided both the active and the inactive states of some families of GPCRs, the influence of lipid composition of bilayer membrane on their activation is still poorly understood. In this work, we address the influence of lipid composition on the structural stability of GPCR, performing molecular dynamics simulations of three kinds of states: apo-, and agonist epinephrine-, or antagonist alprenolol-bound β 2 AR. These three kinds of β 2 ARs were embedded in four types of lipid membranes: (i) pure palmitoyl-oleoyl-phosphatidyl-choline (POPC), (ii) POPC/cholesterol (CHL), (iii) POPC/CHL/GM1 (GM1 ganglioside), (iv) POPC/palmitoyl-oleoyl-phosphatidyl-ethanolamine (POPE)/CHL/ sphingomyeline (SM). The side chains of Lys267 6.29 and Asp331 7.58 showed different conformations among the three states in all types of lipid membranes. The distances between Lys267 6.29 and Asp331 7.58 of apo-and alprenolol-bound β 2 ARs are smaller than that of the epinephrine-bound β 2 AR. In contrast, β 2 ARs in POPC/ CHL bilayer were unstable in which the salt bridge; i.e., ionic lock, was not formed between Arg131 3.50 and Glu268 6.30. We have also examined the distribution of lipid molecules. A stable hydrophobic interaction between CHL and β 2 AR was observed at transmembrane helix5 in POPC/CHL/GM1 and POPC/POPE/CHL/ SM membranes. These results suggest that the lipid composition strongly affects the conformation of GPCR and essentially concerns the GPCR activation.

Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions

Journal of Computer-aided Molecular Design, 2016

A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.

Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions

Scientific reports, 2018

Lipids are becoming known as essential allosteric modulators of G protein-coupled receptor (GPCRs). However, how they exert their effects on GPCR conformation at the atomic level is still unclear. In light of recent experimental data, we have performed several long-timescale molecular dynamics (MD) simulations, totalling 24 μs, to rigorously map allosteric modulation and conformational changes in the βadrenergic receptor (β2AR) that occur as a result of interactions with three different phospholipids. In particular, we identify different sequential mechanisms behind receptor activation and deactivation, respectively, mediated by specific lipid interactions with key receptor regions. We show that net negatively charged lipids stabilize an active-like state of β2AR that is able to dock Gα protein. Clustering of anionic lipids around the receptor with local distortion of membrane thickness is also apparent. On the other hand, net-neutral zwitterionic lipids inactivate the receptor, gen...

Cholesterol Modulates the Membrane Effects and Spatial Organization of Membrane-Penetrating Ligands for G-Protein Coupled Receptors

Biophysical Journal, 2011

The ligands of certain G-protein coupled receptors (GPCRs) are membrane soluble and reach their target from the lipid bilayer. Lipid composition and dynamics will therefore modulate the activity of these receptors, but specific roles of lipid components, including the ubiquitous cholesterol (Chol), are not clear. We have probed the organization and dynamics of such a lipid-bilayer-penetrating ligand, the endogeneous ligand for the κ-opioid receptor (KOR) dynorphin A (1-17) (DynA), using molecular dynamics (MD) simulations of DynA in cholesterol-depleted and cholesterol-enriched model membranes. DynA is found to penetrate deep inside fluid dimyristoylphosphatidylcholine (DMPC) bilayers, and resides with its N-terminal helix at ∼6 Å away from the bilayer midplane, in a tilted orientation, at an ∼50°angle with respect to the membrane normal. In contrast, DynA inside DMPC/Chol membranes with 20% cholesterol (DMPC/Chol) is situated with its helical segment ∼5 Å higher, i.e., closer to the lipid/water interface and in a relatively vertical orientation. The DMPC membrane shows greater thinning around the insertion and permits a stronger influx of water inside the hydrocarbon core than the DMPC/Chol membranes. Relating these results to data about key GPCR residues that have been implicated in interactions with membrane-inserting GPCR ligands, we conclude that the position of DynA in DMPC/Chol, but not in pure DMPC, correlates with generally proposed GPCR ligand entry pathways. Our predictions provide a possible mechanistic explanation as to why DynA binding to KOR, and the subsequent activation of the receptor, is facilitated in cholesterol-enriched environments. A quantitative description of DynA-induced membrane deformations is obtained with a continuum theory of membrane deformations (CTMD) that is based on hydrophobic matching. Comparison with the MD data reveals the significance of the lipid tail packing energy contribution in the DMPC/Chol mixtures in predicting equilibrium membrane shape around DynA. On this basis, specific corrections are introduced to this energy term within the CTMD framework, thereby extending the applicability of the CTMD framework to lipid raft mixtures and their interactions with GPCR proteins and their ligands.

Functional Modulation of a GPCR Conformational Landscape in a Lipid Bilayer

Journal of the American Chemical Society, 2016

Mapping the conformational landscape of G protein-coupled receptors (GPCR), and in particular how this landscape is modulated by the membrane environment, is required to get a clear picture of how signaling proceeds. To this end, we have developed an original strategy based on solution-state NMR combined with an efficient isotope-labeling scheme. This strategy was applied to a typical G protein-coupled receptor, the leukotriene B4 receptor BLT2, reconstituted in a lipid bilayer. Thanks to this, we are able to provide direct evidence that BLT2 explores a complex landscape with the occurrence of four different conformational states for the unliganded receptor. The relative distribution of the different states is modulated by ligands and the sterol content of the membrane, in parallel with the changes in the ability of the receptor to activate its cognate G protein. This demonstrates a conformational coupling between the agonist and the membrane environment that is likely to be fundame...