A comparative study of drift diffusion and linear ballistic accumulator models in a reward maximization perceptual choice task (original) (raw)

2014, Frontiers in neuroscience

We present new findings that distinguish drift diffusion models (DDMs) from the linear ballistic accumulator (LBA) model as descriptions of human behavior in a two-alternative forced-choice reward maximization (Rmax) task. Previous comparisons have not considered Rmax tasks, and differences identified between the models' predictions have centered on practice effects. Unlike the parameter-free optimal performance curves of the pure DDM, the extended DDM and LBA predict families of curves depending on their additional parameters, and those of the LBA show significant differences from the DDMs, especially for poorly discriminable stimuli that incur high error rates. Moreover, fits to behavior reveal that the LBA and DDM provide different interpretations of behavior as stimulus discriminability increases. Trends for threshold setting (caution) in the DDMs are consistent between fits, while in the corresponding LBA fits, thresholds interact with distributions of starting points in a ...

Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions

Proceedings of the National Academy of Sciences, 2011

How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.

Neurocognitive Modeling of Perceptual Decision Making

The Oxford Handbook of Computational and Mathematical Psychology, 2015

Mathematical psychology and systems neuroscience have converged on stochastic accumulator models to explain decision making. We examined saccade decisions in monkeys while neurophysiological recordings were made within their frontal eye field. Accumulator models were tested on how well they fit response probabilities and distributions of response times to make saccades. We connected these models with neurophysiology. To test the hypothesis that visually responsive neurons represented perceptual evidence driving accumulation, we replaced perceptual processing time and drift rate parameters with recorded neurophysiology from those neurons. To test the hypothesis that movement related neurons instantiated the accumulator, we compared measures of neural dynamics with predicted measures of accumulator dynamics. Thus, neurophysiology both provides a constraint on model assumptions and data for model selection. We highlight a gated accumulator model that accounts for saccade behavior durin...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.