In vitro Bartonella quintana infection modulates the programmed cell death and inflammatory reaction of endothelial cells (original) (raw)
Related papers
Bacteria and endothelial cells: a toxic relationship
Current Opinion in Microbiology, 2017
Pathogenic bacteria use the bloodstream as a highway for getting around the body, and thus have to find ways to enter and exit through the endothelium. Many bacteria approach this problem by producing toxins that can breach the endothelial barrier through diverse creative mechanisms, including directly killing endothelial cells (ECs), weakening the cytoskeleton within ECs, and breaking the junctions between ECs. Toxins can also modulate the immune response by influencing endothelial biology, and can modulate endothelial function by influencing the response of leukocytes. Understanding these interactions, in both the in vitro and in vivo contexts, is of critical importance for designing new therapies for sepsis and other severe bacterial diseases.
International Immunopharmacology, 2003
Bartonella quintana, an emerging gram-negative pathogen, may cause trench fever, endocarditis, cerebral abscess and bacillary angiomatosis usually with the absence of septic shock in humans. B. quintana lipopolysaccharide (LPS), a deep rough endotoxin with strong reactivity in the limulus amebocyte lysate (LAL)-assay, was studied in human whole blood and in a rat model. A significant ( P < 0.05) increase of interleukin-8 (IL-8) concentration, comparable to the level induced by enterobacterial LPS, was stimulated in the human whole blood by B. quintana LPS. Isolated human neutrophils delayed their apoptotic behavior in the presence of B. quintana LPS. In the rat, B. quintana LPS induced a significant ( P < 0.001) increase in white blood cell count, both 30 and 60 min after intravenous injection. Such leukocytosis was inhibited by pretreatment with prazosin, an aadrenergic antagonist. B. quintana LPS did not significantly change heart rate (HR), hematocrit (HCT) and platelet count in the above reported in vivo model, and regarding mean blood pressure (MAP) only a very early (5 min after LPS) and mild (yet significant) hypotension was observed. In contrast, a long-lasting decrease of MAP was found in Salmonella minnesota R595 LPS-treated animals. Blood TNFa levels did not change significantly from the baseline in rats injected with either saline or with B. quintana LPS, on the contrary S. minnesota R595 LPS-injected animals showed substantial increase of TNFa levels up to 2924 pg/ml at 60 min after LPS injection. B. quintana LPS as well as Salmonella LPS-injected rats exhibited an increase of the blood levels of GRO/CINC-1, particularly at 240 min after LPS administration. Apical part of rat gut villi showed several TUNEL-positive cells in tissue sections from B. quintana LPS-treated animals. Taken together, our data demonstrates that B. quintana LPS is able to selectively stimulate some inflammatory mediators. B. quintana LPS-induced leukocytosis appears mediated by an a-adrenergic receptor. The delayed apoptotic process of leukocytes and the chemokine increase may explain the apoptotic cells found in the rat gut and the inflammatory reactions in some human Bartonella diseases. This peculiar 1567-5769/03/$ -see front matter D International Immunopharmacology 3 (2003) 853 -864 inflammatory pattern induced by B. quintana LPS, may partially account for the lack of severe septic shock, observed in human B. quintana infections.
Infection and …, 2005
Bacillary angiomatosis (BA), one of the many clinical manifestations resulting from infection with the facultative intracellular bacterium Bartonella henselae, is characterized by angiogenic lesions. Macrophages have been identified as important effector cells contributing to the angiogenic process during B. henselae infection by infiltrating BA lesions and secreting vascular endothelial growth factor. Monocyte-macrophage chemoattractant protein 1 (MCP-1) recruits macrophages to sites of inflammation. In this study, we investigated the ability of B. henselae to upregulate MCP-1 gene expression and protein production in the human microvascular endothelial cell line HMEC-1. MCP-1 mRNA was induced at 6 and 24 h after treatment with bacteria, whereas protein production was elevated at 6, 24, and 48 h. This induction was not dependent on the presence of bacterial lipopolysaccharide or endothelial cell toll-like receptor 4. However, MCP-1 production was dependent on NF-B activity. Outer membrane proteins of low molecular weight were able to upregulate MCP-1 production. Furthermore, supernatants from B. henselae-infected HMEC-1 were able to induce chemotaxis of THP-1 monocytes. These data suggest a mechanism by which the macrophage effector cell is recruited to the endothelium during B. henselae infection and then contributes to bacterial-induced angiogenesis.
Annals of the New York Academy of Sciences, 2005
Bartonella are the only bacteria known to induce angioproliferative lesions of the human vasculature and liver during infection. Previous work from our lab suggests that GroEL participates in the mitogenic response observed in HUVEC cultures supplemented with the soluble fraction of Bartonella bacilliformis. Work in this study shows that exposure to high concentrations of the fraction is actually cytotoxic for HUVECs. To analyze this phenomenon, live B. bacillformis-HUVEC cocultures were employed to study the effect of excess bacterial GroEL on the host cell during active infection. Four B. bacilliformis strains were generated to produce varying levels of GroEL. HUVEC co-cultures with LSS100, a strain that synthesizes markedly greater quantities of GroEL relative to others, significantly accelerates apoptosis of the co-cultured HUVECs relative to other strains. Acceleration of apoptosis can be inhibited by Z-VAD-FMK, a pan-caspase inhibitor. Time course data show that at 18 h of infection, both LSS100 and control strains significantly inhibit spontaneous apoptosis of co-cultured HUVECs, as previously reported for other Bartonella species. However, by 48 h LSS100 significantly increases apoptosis of the host cell. We hypothesize that intracellular Bartonella GroEL functions as an HSP60 analog, a eukaryotic orthologue known to accelerate procaspase 3 activation by enhancing its vulnerability to upstream activator caspases. These data suggest another strategy whereby Bartonella may regulate host cell growth.
Infection and Immunity, 2005
Bacillary angiomatosis (BA), one of the many clinical manifestations resulting from infection with the facultative intracellular bacterium Bartonella henselae, is characterized by angiogenic lesions. Macrophages have been identified as important effector cells contributing to the angiogenic process during B. henselae infection by infiltrating BA lesions and secreting vascular endothelial growth factor. Monocyte-macrophage chemoattractant protein 1 (MCP-1) recruits macrophages to sites of inflammation. In this study, we investigated the ability of B. henselae to upregulate MCP-1 gene expression and protein production in the human microvascular endothelial cell line HMEC-1. MCP-1 mRNA was induced at 6 and 24 h after treatment with bacteria, whereas protein production was elevated at 6, 24, and 48 h. This induction was not dependent on the presence of bacterial lipopolysaccharide or endothelial cell toll-like receptor 4. However, MCP-1 production was dependent on NF-B activity. Outer membrane proteins of low molecular weight were able to upregulate MCP-1 production. Furthermore, supernatants from B. henselae-infected HMEC-1 were able to induce chemotaxis of THP-1 monocytes. These data suggest a mechanism by which the macrophage effector cell is recruited to the endothelium during B. henselae infection and then contributes to bacterial-induced angiogenesis.
Infection and Immunity, 2002
Bartonella henselae is responsible for various disease syndromes that loosely correlate with the immune status of the host. In the immunocompromised individual, B. henselae -induced angiogenesis, or bacillary angiomatosis, is characterized by vascular proliferative lesions similar to those in Kaposi's sarcoma. We hypothesize that B. henselae -mediated interaction with immune cells, namely, macrophages, induces potential angiogenic growth factors and cytokines which contribute in a paracrine manner to the proliferation of endothelial cells. Vascular endothelial growth factor (VEGF), a direct inducer of angiogenesis, and interleukin-1β (IL-1β), a potentiator of VEGF, were detected within 12 and 6 h, respectively, in supernatants from phorbol 12-myristate 13-acetate-differentiated human THP-1 macrophages exposed to live B. henselae. Pretreatment of macrophages with cytochalasin D, a phagocytosis inhibitor, yielded comparable results, suggesting that bacterium-cell attachment is suf...
Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis
American Journal of Physiology-Lung Cellular and Molecular Physiology, 2003
Gram-negative bacterial sepsis remains a common, life-threatening event. The prognosis for patients who develop sepsis-related complications, including the development of acute respiratory distress syndrome (ARDS), remains poor. A common finding among patients and experimental animals with sepsis and ARDS is endothelial injury and/or dysfunction. A component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) or endotoxin, has been implicated in the pathogenesis of much of the endothelial cell injury and/or dysfunction associated with these disease states. LPS is a highly proinflammatory molecule that elicits a wide array of endothelial responses, including the upregulation of cytokines, adhesion molecules, and tissue factor. In addition to activation, LPS induces endothelial cell death that is apoptotic in nature. This review summarizes the evidence for LPS-induced vascular endothelial injury and examines the molecular signaling pathways that activate and inhi...