Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach (original) (raw)
Related papers
Insights into the molecular architecture of the 26S proteasome
Proceedings of the National Academy of Sciences, 2009
Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the ''base'' part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the ''wobbling'' model that was previously proposed to explain the role of the regulatory complex in opening the gate in the ␣-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.
Assembly of the regulatory complex of the 26S proteasome
Molecular biology reports, 1999
The 19S regulatory complex (RC) of 26S proteasomes is a 900-1000 kDa particle composed of 18 distinct subunits (S1-S15) ranging in molecular mass from 25 to 110 kDa. This particle confers ATP-dependence and polyubiquitin (polyUb) recognition to the 26S proteasome. The symmetry and homogenous structure of the proteasome contrasts sharply with the remarkable complexity of the RC. Despite the fact that the primary sequences of all the subunits are now known, insight has been gained into the function of only eight subunits. The six ATPases within the RC constitute a subfamily (S4-like ATPases) within the AAA superfamily and we have shown that they form specific pairs in vitro. We have now determined that putative coiled-coils within the variable N-terminal regions of these proteins are likely to function as recognition elements that direct the proper placement of the ATPases within the RC. We have also begun mapping putative interactions between non-ATPase subunits and S4-like ATPases. ...
Toward an integrated structural model of the 26S proteasome
Molecular & cellular proteomics : MCP, 2010
The 26S proteasome is the end point of the ubiquitinproteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.
Assembly, structure, and function of the 26S proteasome
Trends in cell biology, 2010
The 26S proteasome is a large multi-protein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Molecular Architecture and Assembly of the Eukaryotic Proteasome
Annual Review of Biochemistry, 2013
The eukaryotic ubiquitin-proteasome system is responsible for most cellular quality-control and regulatory protein degradation. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6 MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. While many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy (cryo-EM), biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently been made. Here we review these novel findings.
Journal of Biological Chemistry - J BIOL CHEM, 2006
The 26 S proteasome is implicated in the control of many major biological functions but a reliable method for the identification of its major substrates, i.e. polyubiquitin (Ub) conjugates, is still lacking. Based on the steps present in cells, i.e. recognition and deubiquitination, we developed an affinity matrix-based purification of polyUb conjugates suitable for any biological sample. Ub-conjugates were first purified from proteasome inhibitor-treated C2C12 cells using the Ub binding domains of the S5a proteasome subunit bound to an affinity matrix and then deubiquitinated by the catalytic domain of the USP2 enzyme. This two step purification of proteasome substrates involving both protein-protein interactions and enzymemediated release allowed highly specific isolation of polyUb 26 S proteasome substrates, which were then resolved on two-dimensional gels post-deubiquitination. To establish our method, we focused on a gel area where spots were best resolved. Surprisingly, spot analysis by mass spectrometry identified ␣2, ␣6, ␣7, 2, 3, 4, and 5 20 S proteasome subunits as potential substrates. Western blots using an anti-3 proteasome subunit antibody confirmed that high molecular weight forms of 3 were present, particularly in proteasome inhibitor-treated cells. Sucrose gradients of cell lysates suggested that the proteasome was first disassembled before subunits were polyubiquitinated. Altogether, we provide a technique that enables large scale identification of 26 S proteasome substrates that should contribute to a better understanding of this proteolytic machinery in any living cell and/or organ/tissue. Furthermore, the data suggest that proteasome homeostasis involves an autoregulatory mechanism. The abbreviations used are: Ub, ubiquitin; USP2, ubiquitin-specific processing protease 2; NEM, N-ethylmaleimide; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; UIM, ubiquitin-interacting motif.